Win32 Thread Information Block Explained

The Thread Information Block (TIB) or Thread Environment Block (TEB) is a data structure in Win32 on x86 that stores information about the currently running thread. It descended from, and is backward-compatible on 32-bit systems with, a similar structure in OS/2.

The TIB is officially undocumented for Windows 9x. The Windows NT series DDK (as well as the MinGW/ReactOS implementation) includes a struct NT_TIB in winnt.h that documents the subsystem independent part. Even before TIB was effectively documented, many applications have already started using its fields that they are effectively a part of the API. The first field containing the SEH frame, in particular, is directly referenced by the code produced by Microsoft's own compiler. The Win32 subsystem-specific part of the TEB is undocumented, but Wine includes a TEB definition in winternl.h.[1]

The TIB can be used to get a lot of information on the process without calling Win32 API. Examples include emulating GetLastError, GetVersion. Through the pointer to the PEB one can obtain access to the import tables (IAT), process startup arguments, image name, etc. It is accessed from the FS segment register on 32-bit Windows and GS on 64-bit Windows.

Contents of the TIB on Windows

This table is based on Wine's work on Microsoft Windows internals.[1]

Bytes/
Type
offset (32-bit, FS)offset (64-bit, GS)Windows VersionsDescription
pointerFS:[0x00]GS:[0x00]Win9x and NTCurrent Structured Exception Handling (SEH) frame

Note: the 64-bit version of Windows uses stack unwinding done in kernel mode instead.

pointerFS:[0x04]GS:[0x08]Win9x and NTStack Base / Bottom of stack (high address)
pointerFS:[0x08]GS:[0x10]Win9x and NTStack Limit / Ceiling of stack (low address)
pointerFS:[0x0C]GS:[0x18]NTSubSystemTib
pointerFS:[0x10]GS:[0x20]NTFiber data
pointerFS:[0x14]GS:[0x28]Win9x and NTArbitrary data slot
pointerFS:[0x18]GS:[0x30]Win9x and NTLinear address of TEB
End of NT subsystem independent part; below are Win32-dependent
pointerFS:[0x1C]GS:[0x38]NTEnvironment Pointer
pointerFS:[0x20]GS:[0x40]NTProcess ID (in some Windows distributions this field is used as DebugContext)
pointerFS:[0x24]GS:[0x48]NTCurrent thread ID
pointerFS:[0x28]GS:[0x50]NTActive RPC Handle
pointerFS:[0x2C]GS:[0x58]Win9x and NTLinear address of the thread-local storage array
pointerFS:[0x30]GS:[0x60]NTLinear address of Process Environment Block (PEB)
4FS:[0x34]GS:[0x68]NTLast error number
4FS:[0x38]GS:[0x6C]NTCount of owned critical sections
pointerFS:[0x3C]GS:[0x70]NTAddress of CSR Client Thread
pointerFS:[0x40]GS:[0x78]NTWin32 Thread Information
124FS:[0x44]GS:[0x80]NT, WineWin32 client information (NT), user32 private data (Wine), 0x60 = LastError (Win95&98), 0x74 = LastError (WinME)
pointerFS:[0xC0]GS:[0x100]NTReserved for Wow64. Contains a pointer to FastSysCall in Wow64.
4FS:[0xC4]GS:[0x108]NTCurrent Locale
4FS:[0xC8]GS:[0x10C]NTFP Software Status Register
216FS:[0xCC]GS:[0x110]NT, WineReserved for OS (NT), kernel32 private data (Wine)
herein: FS:[0x124] 4 NT Pointer to KTHREAD (ETHREAD) structure
4FS:[0x1A4]GS:[0x2C0]NTException code
18FS:[0x1A8]GS:[0x2C8]NTActivation context stack
24FS:[0x1BC]GS:[0x2E8]NT, WineSpare bytes (NT), ntdll private data (Wine)
40FS:[0x1D4]GS:[0x300]NT, WineReserved for OS (NT), ntdll private data (Wine)
1248FS:[0x1FC]GS:[0x350]NT, WineGDI TEB Batch (OS), vm86 private data (Wine)
4FS:[0x6DC]GS:[0x838]NTGDI Region
4FS:[0x6E0]GS:[0x840]NTGDI Pen
4FS:[0x6E4]GS:[0x848]NTGDI Brush
4FS:[0x6E8]GS:[0x850]NTReal Process ID
4FS:[0x6EC]GS:[0x858]NTReal Thread ID
4FS:[0x6F0]GS:[0x860]NTGDI cached process handle
4FS:[0x6F4]GS:[0x868]NTGDI client process ID (PID)
4FS:[0x6F8]GS:[0x86C]NTGDI client thread ID (TID)
4FS:[0x6FC]GS:[0x870]NTGDI thread locale information
20FS:[0x700]GS:[0x878]NTReserved for user application
1248FS:[0x714]GS:[0x890]NTReserved for GL (See wine ref for internals)
4FS:[0xBF4]GS:[0x1250]NTLast Status Value
532FS:[0xBF8]GS:[0x1258]NTStatic UNICODE_STRING buffer
pointerFS:[0xE0C]GS:[0x1478]NTAlso known as DeallocationStack, it establishes the real start address of the stack buffer, hence the real stack limit: it is a few pages less than the stack limit field (which hides the guard pages used to detect stack overflows).
pointer[]FS:[0xE10]GS:[0x1480]NTTLS slots, 4/8 bytes per slot, 64 slots
8FS:[0xF10]GS:[0x1680]NTTLS links (LIST_ENTRY structure)
4FS:[0xF18]GS:[0x1690]NTVDM
4FS:[0xF1C]GS:[0x1698]NTReserved for RPC
4FS:[0xF28]GS:[0x16B0]NTThread error mode (RtlSetThreadErrorMode)
4FS:[0xF78]GS:[0x1748]NTGuaranteed stack bytes
This is not the full table; see wine ref for all fields until FS:[0xfb4] / GS:[17c8]. Newer Windows versions extend the size of TIB further, up to 0x1000/0x1838 in Windows 10. Some of the fields appended are removed, leading to conflicting definitions.[2]

FS (for 32-bit) or GS (for 64-bit) maps to a TIB which is embedded in a data block known as the TDB (thread data base). The TIB contains the thread-specific exception handling chain and pointer to the TLS (thread local storage.) The thread local storage is not the same as C local storage.

Stack information stored in the TIB

A process should be free to move the stack of its threads as long as it updates the information stored in the TIB accordingly. A few fields are key to this matter: stack base, stack limit, deallocation stack, and guaranteed stack bytes, respectively stored at offsets 0x8, 0x10, 0x1478 and 0x1748 in 64 bits. Different Windows kernel functions read and write these values, specially to distinguish stack overflows from other read/write page faults (a read or write to a page guarded among the stack limits in guaranteed stack bytes will generate a stack-overflow exception instead of an access violation). The deallocation stack is important because Windows API allows to change the amount of guarded pages: the function SetThreadStackGuarantee allows both read the current space and to grow it. In order to read it, it reads the GuaranteedStackBytes field, and to grow it, it uses has to uncommit stack pages. Setting stack limits without setting DeallocationStack will probably cause odd behavior in SetThreadStackGuarantee. For example, it will overwrite the stack limits to wrong values. Different libraries call SetThreadStackGuarantee, for example the .NET CLR uses it for setting up the stack of their threads.

Accessing the TIB

The TIB of the current thread can be accessed as an offset of segment register FS (x86) or GS (x64).

It is not common to access the TIB fields by an offset from FS:[0], but rather first getting a linear self-referencing pointer to it stored at FS:[18h]. That pointer can be used with pointer arithmetic or be cast to a struct pointer.

Using Microsoft Windows SDK or similar, a programmer could use an inline function defined in winnt.h named NtCurrentTeb which returns the address of the current Thread Information Block as NT_TIB *.[3]

Alternative methods of access for IA-32 architectures are as follows:

// gcc (AT&T-style inline assembly).void *getTIB(void)

// gcc (named address spaces, same as the inline assembly version on -O1 or -ftree-ter).void *getTIB(void)

// Microsoft C__declspec(naked)void *getTIB

// Using Microsoft's intrinsics instead of inline assembly (works for both X86 and X64 architectures)void *getTIB

See also

Further reading

External links

Notes and References

  1. Web site: wine winternl.h: typedef struct _TEB . GitHub . wine-mirror . 29 October 2019.
  2. Web site: Chapell . Geoff . TEB .
  3. Web site: NtCurrentTeb function . Microsoft Docs . 20 November 2019.