1000 (number) explained

Number:1000
Divisor:1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000
Roman Unicode:M, m, ↀ
Unicode:
Greek Prefix:chilia
Latin Prefix:milli
Lang1:Tamil
Lang1 Symbol:
Lang2:Chinese
Lang2 Symbol:
Lang3:Punjabi
Lang3 Symbol:੧੦੦੦
Lang4:Devanagari
Lang4 Symbol:१०००
Lang5:Armenian
Lang5 Symbol:Ռ
Lang6:Egyptian hieroglyph
Lang6 Symbol:

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

A group of one thousand units is sometimes known, from Ancient Greek, as a chiliad.[1] A period of one thousand years may be known as a chiliad or, more often from Latin, as a millennium. The number 1000 is also sometimes described as a short thousand in medieval contexts where it is necessary to distinguish the Germanic concept of 1200 as a long thousand. It is the first 4-digit integer.

Notation

In Mathematics

A chiliagon is a 1000-sided polygon.

Numbers in the range 1001–1999

1001 to 1099

1100 to 1199

38
\sum
k=1

\sigma(k)

1200 to 1299

17
\sum
k=0

p(k)

, where

p

is the number of partions of

k

{13\choose5}

1289+1291
2
, average of a twin prime pair
n
\sum
j=1

j x prime(j)

1300 to 1399

40
\sum
k=1

\sigma(k)

, Mertens function zero
41
\sum
k=1

\sigma(k)

\left\lfloor

9
2
5

\right\rfloor

1400 to 1499

3
\sum
k=0

\left(\binom{3}{k} x \binom{3+k}{k}\right)2

256
\sum
k=1

d(k)

, where

d(k)

= number of divisors of

k

44(44+1)
2

+

442
4
: triangular number plus quarter square (i.e., A000217(44) + A002620(44))

1500 to 1599

\left\lfloor

10
3
9

\right\rfloor

31 x (3 x 31+7)
2
= number of cards needed to build a 31-tier house of cards with a flat, one-card-wide roof
50
\sum
k=1
50
\gcd(50,k)

\sqrt{10362+11732}

and

1036+1173=472

1 (mod 15^2)

1600 to 1699

44
\sum
k=1

\sigma(k)

16(162+3 x 16-1)
3
= number of monotonic triples (x,y,z) in 3
5
\sum
k=0

(k+1)!\binom{5}{k}

45
\sum
k=1

\sigma(k)

4
9!!\sum
k=0
1
2k+1

1700 to 1799

\sumd|12\binom{12}{d}

5
\sum
k=0

\binom{5}{k}k

46
\sum
k=1

\sigma(k)

\sum1\leqprime(i)(2 ⋅ i-1)

: sum of piles of first 10 primes

1800 to 1899

4
\sum
k=0

\binom{4}{k}4

3
\#(P
2,1

)

(5)
D
6

\lfloor\sqrt[3]{13!}\rfloor

1864!-2
2
is a prime

1900 to 1999

123+456+789+101112

, largest number not the sum of distinct pentadecagonal numbers
6
\sum
k=0
6!
k!
= total number of ordered k-tuples (k=0,1,2,3,4,5,6) of distinct elements from an 6-element set

37-63

n37-1
n-1
is prime
21
\sum
k=1

{k\phi(k)}

Prime numbers

There are 135 prime numbers between 1000 and 2000:[109]

1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999

Notes and References

  1. Web site: chiliad. . https://archive.today/20220325170822/https://www.merriam-webster.com/dictionary/chiliad. March 25, 2022. live.
  2. 2023-01-08.
  3. a(n) = n^3 + n.
  4. Egyptian fractions: number of partitions of 1 into reciprocals of positive integers <= n.
  5. 4 times triangular numbers: a(n) = 2*n*(n+1). 2023-10-10.
  6. a(n) = 2^n - n.
  7. a(n) = n*(n+1)^2/2.
  8. Generalized 30-gonal (or triacontagonal) numbers: m*(14*m - 13) with m = 0, +1, -1, +2, -2, +3, -3.
  9. Number of primes <= 2^n.
  10. E-toothpick sequence (see Comments lines for definition).
  11. 2023-10-10.
  12. Web site: Base converter number conversion .
  13. Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1.
  14. Central polygonal numbers: a(n) = n^2 - n + 1.
  15. a(n) = 2*n^2.
  16. Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ....
  17. "Three-quarter squares": a(n) = n^2 - A002620(n).
  18. Number of partitions of n into distinct parts >= 2.
  19. 8 times triangular numbers: a(n) = 4*n*(n+1).
  20. Numbers n such that 9*n = (n written backwards).
  21. Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 163
  22. 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
  23. Web site: Sloane's A002997 : Carmichael numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  24. Web site: Sloane's A001107 : 10-gonal (or decagonal) numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  25. Web site: A002275 - OEIS . 2024-03-08 . oeis.org.
  26. Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).
  27. 2024-05-23 .
  28. Van Ekeren . Jethro . Lam . Ching Hung . Möller . Sven . Shimakura . Hiroki . Schellekens' list and the very strange formula . . 380 . . Amsterdam . 2021 . 1–34 (107567) . 10.1016/j.aim.2021.107567 . 4200469 . 1492.17027 . 218870375 . 2005.12248 .
  29. 2022-06-02.
  30. Web site: Sloane's A000292 : Tetrahedral numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  31. Web site: 1150 (number). The encyclopedia of numbers.
  32. Web site: Sloane's A000101 : Increasing gaps between primes (upper end). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-07-10.
  33. Web site: Sloane's A097942 : Highly totient numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  34. Web site: Sloane's A080076 : Proth primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  35. Web site: Sloane's A005900 : Octahedral numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  36. Web site: Sloane's A069125 : a(n) = (11*n^2 - 11*n + 2)/2. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  37. Web site: 1157 (number). The encyclopedia of numbers.
  38. 2022-06-02.
  39. Web site: A063776 - OEIS. oeis.org.
  40. Web site: A000256 - OEIS. oeis.org.
  41. Web site: 1179 (number). The encyclopedia of numbers.
  42. Web site: A000339 - OEIS. oeis.org.
  43. Web site: A271269 - OEIS. oeis.org.
  44. Web site: A000031 - OEIS. oeis.org.
  45. Book: Higgins, Peter . Number Story: From Counting to Cryptography . limited . 2008 . Copernicus . New York . 978-1-84800-000-1 . 61 .
  46. Web site: Sloane's A042978 : Stern primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  47. Web site: A121038 - OEIS. oeis.org.
  48. Web site: A175654 - OEIS. oeis.org.
  49. oeis.org/A062092
  50. >
  51. Meehan, Eileen R., Why TV is not our fault: television programming, viewers, and who's really in control Lanham, MD: Rowman & Littlefield, 2005
  52. Web site: A265070 - OEIS. oeis.org.
  53. Web site: 1204 (number). The encyclopedia of numbers.
  54. Web site: A303815 - OEIS. oeis.org.
  55. Higgins, ibid.
  56. Web site: Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  57. Web site: Sloane's A001110 : Square triangular numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  58. Web site: A046177 - OEIS . 2024-12-18 . oeis.org.
  59. Web site: Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  60. Web site: A004111 - OEIS. oeis.org.
  61. Web site: A061262 - OEIS. oeis.org.
  62. Web site: A006154 - OEIS. oeis.org.
  63. Web site: A000045 - OEIS. oeis.org.
  64. Web site: A160160 - OEIS. oeis.org.
  65. Web site: Sloane's A005898 : Centered cube numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  66. oeis.org/A305843
  67. Web site: A007690 - OEIS. oeis.org.
  68. Web site: Sloane's A033819 : Trimorphic numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  69. Web site: Sloane's A002182 : Highly composite numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  70. Web site: Sloane's A014575 : Vampire numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  71. Web site: A124826 - OEIS. oeis.org.
  72. Web site: A142005 - OEIS. oeis.org.
  73. Web site: A066186 - OEIS. oeis.org.
  74. Web site: A115073 - OEIS. oeis.org.
  75. Web site: A061256 - OEIS. oeis.org.
  76. Web site: A061954 - OEIS. oeis.org.
  77. Web site: A030299 - OEIS. oeis.org.
  78. Web site: Sloane's A002559 : Markoff (or Markov) numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  79. Web site: A005064 - OEIS. oeis.org.
  80. Web site: A316473 - OEIS. oeis.org.
  81. Web site: A000032 - OEIS. oeis.org.
  82. Web site: 1348 (number). The encyclopedia of numbers.
  83. Web site: Sloane's A000332 : Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  84. Web site: A001631 - OEIS. oeis.org. 25 June 2023.
  85. Web site: Sloane's A001567 : Fermat pseudoprimes to base 2. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  86. Web site: Sloane's A050217 : Super-Poulet numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  87. Web site: Sloane's A000682 : Semimeanders. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  88. Web site: Sloane's A051015 : Zeisel numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  89. Web site: Sloane's A000108 : Catalan numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  90. Web site: Sloane's A002411 : Pentagonal pyramidal numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  91. Web site: Sloane's A000078 : Tetranacci numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
    • 1534 = number of achiral integer partitions of 50
    • 1535 = Thabit number
    • 1536 = a common size of microplate, 3-smooth number (29×3), number of threshold functions of exactly 4 variables
  92. Web site: Sloane's A005231 : Odd abundant numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  93. Web site: Sloane's A000045 : Fibonacci numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  94. Web site: Sloane's A001599 : Harmonic or Ore numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  95. Web site: Sloane's A002407 : Cuban primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  96. Web site: Sloane's A000073 : Tribonacci numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  97. Web site: Sloane's A007850 : Giuga numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  98. Web site: Sloane's A054377 : Primary pseudoperfect numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  99. Kellner, Bernard C.; 'The equation denom(Bn) = n has only one solution'
  100. A006318. Large Schröder numbers. 2016-05-22.
  101. Web site: Sloane's A000058 : Sylvester's sequence. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  102. 2022-06-02.
  103. Web site: "Aztec Diamond". 2022-09-20.
  104. Web site: Sloane's A034897 : Hyperperfect numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  105. Web site: Sloane's A051870 : 18-gonal numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-12.
  106. A Mod-n Ackermann Function, or What's So Special About 1969?. Jon Froemke. Jerrold W. Grossman. amp. The American Mathematical Monthly. 100. 2. Feb 1993. 180–183. Mathematical Association of America. 2323780. 10.2307/2323780.
  107. ,
  108. Web site: Stein . William A. . William A. Stein . The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture . wstein.org . 10 February 2017 . 6 February 2021.