Thermo-magnetic motor explained
Thermomagnetic motors (also known as Curie wheels,[1] Curie-motors[2] [3] and pyromagnetic motors[4]) convert heat into kinetic energy using the thermomagnetic effect,[5] i.e., the influence of temperature on the magnetic material magnetization.[6]
Historical background
This technology dates back to 19th century, when a number of scientists submitted patents on the so-called "pyro-magnetic generators".[7] These systems operate in a magnetic Brayton cycle, in a reverse way of the magnetocaloric refrigerators.[8] Experiments have produced only extremely inefficient working prototypes,[9] [10] [11] however, thermodynamic analysis indicate that thermomagnetic motors present high efficiency related to Carnot efficiency for small temperature differences around the magnetic material Curie temperature.[12] The thermomagnetic motor principle has been studied as a possible actuator in smart materials,[13] being successful in the generation of electric energy from ultra-low temperature gradients.[14]
See also
References
Notes and References
- Alves. C.S.. Colman. F.C.. Foleiss. G.L.. Vieira. G.T.F.. Szpak. W.. November 2013. Numerical simulation and design of a thermomagnetic motor. Applied Thermal Engineering. 61. 2. 616–622. 10.1016/j.applthermaleng.2013.07.053.
- Karle. Anton. October 2001. The thermomagnetic Curie-motor for the conversion of heat into mechanical energy. International Journal of Thermal Sciences. 40. 9. 834–842. 10.1016/S1290-0729(01)01270-4.
- Trapanese. Marco. April 2011. A dq axis theory of the magnetic, thermal, and mechanical properties of Curie motor. Journal of Applied Physics. 109. 7. 07E706. 10.1063/1.3562505. 2011JAP...109gE706T. 0021-8979. 10447/80505. free.
- Edison, T. A., "Pyromagnetic Motor", US Patent No. 380,100; Patented March 27, 1888.
- Bessa. C.V.X.. Ferreira. L.D.R.. Horikawa. O.. Gama. S.. December 2018. On the relevance of temperature, applied magnetic field and demagnetizing factor on the performance of thermomagnetic motors. Applied Thermal Engineering. 145. 245–250. 10.1016/j.applthermaleng.2018.09.061. 117682356 .
- Gama. Sergio. Ferreira. Lucas D. R.. Bessa. Carlos V. X.. Horikawa. Oswaldo. Coelho. Adelino A.. Gandra. Flavio C.. Araujo. Raul. Egolf. Peter W.. 2016. Analytic and Experimental Analysis of Magnetic Force Equations. IEEE Transactions on Magnetics. 52. 7. 1–4. 10.1109/tmag.2016.2517127. 21094593 .
- Book: Ferreira . L. . Bessa . C. . Silva . I. . Gama . S. . 107–111 . 10.1201/b15002-23 . 2013 . Green Design, Materials and Manufacturing Processes . 978-1-138-00046-9.
- Bessa . C. V. X. . Ferreira . L. D. R. . Horikawa . O. . Monteiro . J. C. B. . Gandra . F. G. . Gama . S. . On the influence of thermal hysteresis on the performance of thermomagnetic motors . Journal of Applied Physics . 2017 . 122 . 24 . 244502 . 10.1063/1.5010356 . 2017JAP...122x4502B .
- Book: Martin, Thomas Commerford
. The electric motor and its applications . Wetzler, Joseph . 1891 . W. J. Johnston . New York . 272–278 .
- 1972 . Murakami . K. . Nemoto . M. . Some experiments and considerations on the behavior of thermomagnetic motors . IEEE Transactions on Magnetics . 8 . 3 . 387–389 . 10.1109/tmag.1972.1067406 . 1972ITM.....8..387M.
- Andreevskii . K. N. . Mandzhavidze . A. G. . Margvelashvili . I. G. . Sobolevskaya . S. V. . September 1, 1998 . Investigation of the thermodynamic and physical characteristics of a thermomagnetic engine with a gadolinium working element . Technical Physics . 43 . 9 . 1115–1118 . 10.1134/1.1259144 . 1998JTePh..43.1115A . 121369732 . 1063-7842.
- Egolf . Peter W. . Kitanovski . Andrej . Diebold . Marc . Gonin . Cyrill . Vuarnoz . Didier . Magnetic power conversion with machines containing full or porous wheel heat exchangers . Journal of Magnetism and Magnetic Materials . 321 . 7 . 758–762 . 10.1016/j.jmmm.2008.11.044 . 2009 . 2009JMMM..321..758E.
- Smart Materials Structures of Systems, Allied Publishers,, pages 23–25.
- Kishore . Ravi Anant . Davis . Brenton . Greathouse . Jake . Hannon . Austin . Emery Kennedy . David . Millar . Alec . Mittel . Daniel . Nozariasbmarz . Amin . Kang . Min Gyu . 2019 . Energy scavenging from ultra-low temperature gradients . Energy & Environmental Science . 12 . 3 . 1008–1018 . 10.1039/C8EE03084G . 104331548 . 1754-5692.