Tetracene, also called naphthacene, is a polycyclic aromatic hydrocarbon. It has the appearance of a pale orange powder. Tetracene is the four-ringed member of the series of acenes.
Tetracene is a molecular organic semiconductor, used in organic field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs). Tetracene can be used as a gain medium in dye lasers as a sensitiser in chemoluminescence. Napthacene is the main component of the tetracycline class of antibiotics.
German physicist Jan Hendrik Schön claimed to have developed an electrically pumped laser based on tetracene during his time at Bell Labs (1997–2002). However, his results could not be reproduced, and this is considered to be a scientific fraud.[1]
In May 2007, Japanese researchers from Tohoku University and Osaka University reported an ambipolar light-emitting transistor made of a single tetracene crystal.[2] Ambipolar means that the electric charge is transported by both positively charged holes and negatively charged electrons.
In 2024, it was used to produce lower-energy excitations in solar cells in a process known as singlet fission. An interface layer between tetracene and silicon transfers them into the silicon layer, where most of their energy can be converted into electricity.[3]