In mathematical analysis, Tannery's theorem gives sufficient conditions for the interchanging of the limit and infinite summation operations. It is named after Jules Tannery.[1]
Let
Sn=
infty | |
\sum | |
k=0 |
ak(n)
\limn\toinftyak(n)=bk
|ak(n)|\leMk
infty | |
\sum | |
k=0 |
Mk<infty
\limn\toinftySn=
infty | |
\sum | |
k=0 |
bk
\ell1
An elementary proof can also be given.
ex
\limn\toinfty\left(1+
x | |
n |
\right)n=\limn\toinfty
n | |
\sum | |
k=0 |
{n\choosek}
xk | |
nk |
.
Define
ak(n)={n\choosek}
xk | |
nk |
|ak(n)|\leq
|x|k | |
k! |
infty | |
\sum | |
k=0 |
|x|k | |
k! |
=e|x|<infty
\limn\toinfty
infty | |
\sum | |
k=0 |
{n\choosek}
xk | |
nk |
infty | |
=\sum | |
k=0 |
\limn\toinfty{n\choosek}
xk | |
nk |
infty | |
=\sum | |
k=0 |
xk | |
k! |
=ex.
1+1/22+1/32+ … =
\pi2 | |
6 |