Tangloids is a mathematical game for two players created by Piet Hein to model the calculus of spinors.
A description of the game appeared in the book "Martin Gardner's New Mathematical Diversions from Scientific American" by Martin Gardner from 1996 in a section on the mathematics of braiding.[1] [2] [3]
Two flat blocks of wood each pierced with three small holes are joined with three parallel strings. Each player holds one of the blocks of wood. The first player holds one block of wood still, while the other player rotates the other block of wood for two full revolutions. The plane of rotation is perpendicular to the strings when not tangled. The strings now overlap each other. Then the first player tries to untangle the strings without rotating either piece of wood. Only translations (moving the pieces without rotating) are allowed. Afterwards, the players reverse roles; whoever can untangle the strings fastest is the winner. Try it with only one revolution. The strings are of course overlapping again but they can not be untangled without rotating one of the two wooden blocks.
The Balinese cup trick, appearing in the Balinese candle dance, is a different illustration of the same mathematical idea. The anti-twister mechanism is a device intended to avoid such orientation entanglements. A mathematical interpretation of these ideas can be found in the article on quaternions and spatial rotation.
This game serves to clarify the notion that rotations in space have properties that cannot be intuitively explained by considering only the rotation of a single rigid object in space. The rotation of vectors does not encompass all of the properties of the abstract model of rotations given by the rotation group. The property being illustrated in this game is formally referred to in mathematics as the "double covering of SO(3) by SU(2)". This abstract concept can be roughly sketched as follows.
Rotations in three dimensions can be expressed as 3x3 matrices, a block of numbers, one each for x,y,z. If one considers arbitrarily tiny rotations, one is led to the conclusion that rotations form a space, in that if each rotation is thought of as a point, then there are always other nearby points, other nearby rotations that differ by only a small amount. In small neighborhoods, this collection of nearby points resembles Euclidean space. In fact, it resembles three-dimensional Euclidean space, as there are three different possible directions for infinitesimal rotations: x, y and z. This properly describes the structure of the rotation group in small neighborhoods. For sequences of large rotations, however, this model breaks down; for example, turning right and then lying down is not the same as lying down first and then turning right. Although the rotation group has the structure of 3D space on the small scale, that is not its structure on the large scale. Systems that behave like Euclidean space on the small scale, but possibly have a more complicated global structure are called manifolds. Famous examples of manifolds include the spheres: globally, they are round, but locally, they feel and look flat, ergo "flat Earth".
S3
The structure of this abstract space, of a 3-sphere with polar opposites identified, is quite weird. Technically, it is a projective space. One can try to imagine taking a balloon, letting all the air out, then gluing together polar opposite points. If attempted in real life, one soon discovers it can't be done globally. Locally, for any small patch, one can accomplish the flip-and-glue steps; one just can't do this globally. (Keep in mind that the balloon is
S2
S1
The so-called "double covering" refers to the idea that this gluing-together of polar opposites can be undone. This can be explained relatively simply, although it does require the introduction of some mathematical notation. The first step is to blurt out "Lie algebra". This is a vector space endowed with the property that two vectors can be multiplied. This arises because a tiny rotation about the x-axis followed by a tiny rotation about the y-axis is not the same as reversing the order of these two; they are different, and the difference is a tiny rotation in along the z-axis. Formally, this inequivalence can be written as
xy-yx=z
One may then ask, "what else behaves like this?" Well, obviously the 3D rotation matrices do; after all, the whole point is that they do correctly, perfectly mathematically describe rotations in 3D space. As it happens, though, there are also 2x2, 4x4, 5x5, ... matrices that also have this property. One may reasonably ask "OK, so what is the shape of their manifolds?". For the 2x2 case, the Lie algebra is called su(2) and the manifold is called SU(2), and quite curiously, the manifold of SU(2) is the 3-sphere (but without the projective identification of polar opposites).
This now allows one to play a bit of a trick. Take a vector
\vecv=(v1,v2,v3)
R
R\vecv
\vecv
\sigma1,\sigma2,\sigma3
\sigma1\sigma2-\sigma2\sigma1=\sigma3
xy-yx=z
\vec\sigma ⋅ \vecv=v1\sigma1+v2\sigma2+v3\sigma3
S
S-1(\vec\sigma ⋅ \vecv)S=R\vecv
Here,
S-1
S
S-1S=SS-1=1.
S
R
S
+S
-S
(-1) x (-1)=+1.
+S
-S
R
S
\theta,
R
\cos\theta
S
\cos\theta/2
The sketch can be completed with some general remarks. First, Lie algebras are generic, and for each one, there are one or more corresponding Lie groups. In physics, 3D rotations of normal 3D objects are obviously described by the rotation group, which is a Lie group of 3x3 matrices
R
S
\pi1(SO(3))=Z2
Z2=\{+1,-1\}
+S
-S