Takeuti–Feferman–Buchholz ordinal explained

In the mathematical fields of set theory and proof theory, the Takeuti–Feferman–Buchholz ordinal (TFBO) is a large countable ordinal, which acts as the limit of the range of Buchholz's psi function and Feferman's theta function.[1] [2] It was named by David Madore, after Gaisi Takeuti, Solomon Feferman and Wilfried Buchholz. It is written as

\psi0(\varepsilon

\Omega\omega+1

)

using Buchholz's psi function,[3] an ordinal collapsing function invented by Wilfried Buchholz,[4] [5] [6] and
\theta
\varepsilon
\Omega\omega+1

(0)

in Feferman's theta function, an ordinal collapsing function invented by Solomon Feferman.[7] [8] It is the proof-theoretic ordinal of several formal theories:
1
\Pi
1

-CA+BI

,[9] a subsystem of second-order arithmetic
1
\Pi
1
-comprehension + transfinite induction

Despite being one of the largest large countable ordinals and recursive ordinals, it is still vastly smaller than the proof-theoretic ordinal of ZFC.[11]

Definition

\Omega\alpha

represent the smallest uncountable ordinal with cardinality

\aleph\alpha

.

\varepsilon\beta

represent the

\beta

th epsilon number, equal to the

1+\beta

th fixed point of

\alpha\mapsto\omega\alpha

\psi

represent Buchholz's psi function

References

  1. Web site: Buchholz's ψ functions. 2021-08-10. cantors-attic. en-US.
  2. Web site: Buchholz's ψ functions. 2021-08-17. cantors-attic. en-US.
  3. Web site: 2017-07-29. A Zoo of Ordinals. 2021-08-10. Madore.
  4. Web site: 1981. Collapsingfunktionen. 2021-08-10. University of Munich.
  5. 1986-01-01. A new system of proof-theoretic ordinal functions. Annals of Pure and Applied Logic. en. 32. 195–207. 10.1016/0168-0072(86)90052-7. 0168-0072. Buchholz. W.. free.
  6. Book: Buchholz . Wilfried . Schütte . Kurt . 88-7088-166-0 . Naples, Italy . Bibliopolis . Studies in Proof Theory, Monographs . Proof Theory of Impredicative Subsystems of Analysis . 2 . 1988.
  7. Book: Takeuti, Gaisi . Proof Theory . 2nd. Dover Publications . 978-0-486-32067-0 . 2013.
  8. Book: Buchholz . W. . ⊨ISILC Proof Theory Symposion . Normalfunktionen und Konstruktive Systeme von Ordinalzahlen . Lecture Notes in Mathematics . 1975 . 500 . 4–25 . 10.1007/BFb0079544 . Springer . 978-3-540-07533-2 . de.
  9. Book: Buchholz . Wilfried . Feferman . Solomon . Solomon Feferman . Pohlers . Wolfram . Sieg . Wilfried . 10.1007/bfb0091894 . 3-540-11170-0 . 655036 . Springer-Verlag, Berlin-New York . Lecture Notes in Mathematics . Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies . 897 . 1981.
  10. Web site: ordinal analysis in nLab. 2021-08-28. ncatlab.org.
  11. Web site: number theory - Can PA prove very fast growing functions to be total?. 2021-08-17. Mathematics Stack Exchange.