The best known vertex transitive digraphs (as of October 2008) in the directed Degree diameter problem are tabulated below.
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 6[1] | 10[2] | 20[3] | 27 | 72[4] | 144 | 171 | 336[5] | 504 | 737 | |
3 | 12 | 27 | 60[6] | 165[7] | 333 | 1 152[8] | 2 041[9] | 5 115 | 11 568 | 41 472 | |
4 | 20 | 60 | 168 | 465 | 1 378 | 7 200 | 14 400[10] | 42 309 | 137 370 | 648 000 | |
5 | 30 | 120 | 360 | 1 152 | 3 775 | 28 800 | 86 400 | 259 200 | 1 010 658 | 5 184 000 | |
6 | 42 | 210 | 840 | 2 520 | 9 020 | 88 200 | 352 800 | 1 411 200 | 5 184 000 | 27 783 000 | |
7 | 56 | 336 | 1 680 | 6 720 | 20 160 | 225 792 | 1 128 960 | 5 644 800 | 27 783 000 | 113 799 168 | |
8 | 72 | 504 | 3 024 | 15 120 | 60 480 | 508 032 | 3 048 192 | 18 289 152 | 113 799 168 | 457 228 800 | |
9 | 90 | 720 | 5 040 | 30 240 | 151 200 | 1 036 800 | 7 257 600 | 50 803 200 | 384 072 192 | 1 828 915 200 | |
10 | 110 | 990 | 7 920 | 55 400 | 332 640 | 1 960 200 | 15 681 600 | 125 452 800 | 1 119 744 000 | 6 138 320 000 | |
11 | 132 | 1 320 | 11 880 | 95 040 | 665 280 | 3 991 680 | 31 152 000 | 282 268 800 | 2 910 897 000 | 18 065 203 200 | |
12 | 156 | 1 716 | 17 160 | 154 440 | 1 235 520 | 8 648 640 | 58 893 120 | 588 931 200 | 6 899 904 000 | 47 703 427 200 | |
13 | 182 | 2 184 | 24 024 | 240 240 | 2 162 160 | 17 297 280 | 121 080 960 | 1 154 305 152 | 15 159 089 098 | 115 430 515 200 |
The footnotes in the table indicate the origin of the digraph that achieves the given number of vertices: