Common thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows:
See main article: article, List of thermodynamic properties, Thermodynamic potential, Free entropy and Defining equation (physical chemistry).
Many of the definitions below are also used in the thermodynamics of chemical reactions.
Quantity (common name/s) | (Common) symbol/s | SI unit | Dimension |
---|---|---|---|
Number of molecules | N | 1 | 1 |
Amount of substance | n | mol | N |
Temperature | T | K | Θ |
Heat Energy | Q, q | J | ML2T−2 |
Latent heat | QL | J | ML2T−2 |
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI unit | Dimension | ||||
---|---|---|---|---|---|---|---|---|
Thermodynamic beta, inverse temperature | β | \beta=1/kBT | J−1 | T2M−1L−2 | ||||
Thermodynamic temperature | τ | \tau=kBT \tau=kB\left(\partialU/\partialS\right)N 1/\tau=1/kB\left(\partialS/\partialU\right)N | J | ML2T−2 | ||||
Entropy | S | S=-kB\sumipilnpi S=-\left(\partialF/\partialT\right)V S=-\left(\partialG/\partialT\right)N,P | J⋅K−1 | ML2T−2Θ−1 | ||||
Pressure | P | P=-\left(\partialF/\partialV\right)T,N P=-\left(\partialU/\partialV\right)S,N | Pa | ML−1T−2 | ||||
Internal Energy | U | U=\sumiEi | J | ML2T−2 | ||||
Enthalpy | H | H=U+pV | J | ML2T−2 | ||||
Z | 1 | 1 | ||||||
Gibbs free energy | G | G=H-TS | J | ML2T−2 | ||||
Chemical potential (of component i in a mixture) | μi | \mui=\left(\partialU/\partialNi\right
\mui=\left(\partialF/\partialNi\right)T, F N \mui \mui=\left(\partialG/\partialNi\right)T, G N \mui \mui/\tau=-1/kB\left(\partialS/\partialNi\right)U,V | J | ML2T−2 | ||||
Helmholtz free energy | A, F | F=U-TS | J | ML2T−2 | ||||
Landau potential, Landau free energy, Grand potential | Ω, ΦG | \Omega=U-TS-\muN | J | ML2T−2 | ||||
Massieu potential, Helmholtz free entropy | Φ | \Phi=S-U/T | J⋅K−1 | ML2T−2Θ−1 | ||||
Planck potential, Gibbs free entropy | Ξ | \Xi=\Phi-pV/T | J⋅K−1 | ML2T−2Θ−1 | ||||
See main article: articles, Heat capacity and Thermal expansion.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI unit | Dimension |
---|---|---|---|---|
General heat/thermal capacity | C | C=\partialQ/\partialT | J⋅K−1 | ML2T−2Θ−1 |
Heat capacity (isobaric) | Cp | Cp=\partialH/\partialT | J⋅K−1 | ML2T−2Θ−1 |
Specific heat capacity (isobaric) | Cmp | Cmp=\partial2Q/\partialm\partialT | J⋅kg−1⋅K−1 | L2T−2Θ−1 |
Molar specific heat capacity (isobaric) | Cnp | Cnp=\partial2Q/\partialn\partialT | J⋅K−1⋅mol−1 | ML2T−2Θ−1N−1 |
Heat capacity (isochoric/volumetric) | CV | CV=\partialU/\partialT | J⋅K−1 | ML2T−2Θ−1 |
Specific heat capacity (isochoric) | CmV | CmV=\partial2Q/\partialm\partialT | J⋅kg−1⋅K−1 | L2T−2Θ−1 |
Molar specific heat capacity (isochoric) | CnV | CnV=\partial2Q/\partialn\partialT | J⋅K⋅−1 mol−1 | ML2T−2Θ−1N−1 |
Specific latent heat | L | L=\partialQ/\partialm | J⋅kg−1 | L2T−2 |
Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient | γ | \gamma=Cp/CV=cp/cV=Cmp/CmV | 1 | 1 |
See main article: Thermal conductivity.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI unit | Dimension |
---|---|---|---|---|
Temperature gradient | No standard symbol | \nablaT | K⋅m−1 | ΘL−1 |
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer | P | P=dQ/dt | W | ML2T−3 |
Thermal intensity | I | I=dP/dA | W⋅m−2 | MT−3 |
Thermal/heat flux density (vector analogue of thermal intensity above) | q | Q=\iintq ⋅ dSdt | W⋅m−2 | MT−3 |
The equations in this article are classified by subject.
Physical situation | Equations | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isentropic process (adiabatic and reversible) | Q=0, \DeltaU=-W For an ideal gas p1
=p2
T1
=T2
=
| ||||||||||||||||||||||||||||||||||||||||||||||||
Isothermal process | \DeltaU=0, W=Q For an ideal gas W=kTNln(V2/V1) W=nRTln(V2/V1) | ||||||||||||||||||||||||||||||||||||||||||||||||
Isobaric process | p1 = p2, p = constant W=p\DeltaV, Q=\DeltaU+p\deltaV | ||||||||||||||||||||||||||||||||||||||||||||||||
Isochoric process | V1 = V2, V = constant W=0, Q=\DeltaU | ||||||||||||||||||||||||||||||||||||||||||||||||
Free expansion | \DeltaU=0 | ||||||||||||||||||||||||||||||||||||||||||||||||
Work done by an expanding gas | Process W=
pdV Net work done in cyclic processes W=\ointcyclepdV=\ointcycle\DeltaQ | ||||||||||||||||||||||||||||||||||||||||||||||||
Nomenclature | Equations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ideal gas law |
| pV=nRT=kTN
=
=
| |||||||||
Pressure of an ideal gas |
| p=
=
=
\rho\langlev2\rangle | |||||||||
Quantity | General Equation | Isobaric Δp = 0 | Isochoric ΔV = 0 | Isothermal ΔT = 0 | Adiabatic Q=0 | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Work W | \deltaW=-pdV | -p\DeltaV | 0 |
|
=CV\left(T2-T1\right) | ||||||||||||||||||||||||||||||||||
Heat Capacity C | (as for real gas) | Cp=
nR Cp=
nR | CV=
nR CV=
nR | ||||||||||||||||||||||||||||||||||||
Internal Energy ΔU | \DeltaU=CV\DeltaT | Q+W Qp-p\DeltaV | Q CV\left(T2-T1\right) | 0 Q=-W | W CV\left(T2-T1\right) | ||||||||||||||||||||||||||||||||||
Enthalpy ΔH | H=U+pV | Cp\left(T2-T1\right) | QV+V\Deltap | 0 | Cp\left(T2-T1\right) | ||||||||||||||||||||||||||||||||||
Entropy Δs | \DeltaS=CVln{T2\overT1}+nRln{V2\overV1} \DeltaS=Cpln{T2\overT1}-nRln{p2\overp1} |
|
|
|
=0 | ||||||||||||||||||||||||||||||||||
Constant |
|
|
| pV | pV\gamma |
S=kBln\Omega
dS=
\deltaQ | |
T |
Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.
Physical situation | Nomenclature | Equations | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maxwell–Boltzmann distribution |
\theta=kBT/mc2 K2 is the modified Bessel function of the second kind. | Non-relativistic speeds P\left(v\right)=4\pi\left(
\right)3/2v2
Relativistic speeds (Maxwell–Jüttner distribution) f(p)=
e-\gamma(p)/\theta | |||||||||||||||
Entropy Logarithm of the density of states |
| S=-kB\sumiPilnPi=kBln\Omega where: Pi=1/\Omega | |||||||||||||||
Entropy change | \DeltaS=
\DeltaS=kBNln
+NCVln
| ||||||||||||||||
Entropic force | FS=-T\nablaS | ||||||||||||||||
Equipartition theorem | df = degree of freedom | Average kinetic energy per degree of freedom \langleEk\rangle=
kT Internal energy U=df\langleEk\rangle=
kT | |||||||||||||||
Corollaries of the non-relativistic Maxwell–Boltzmann distribution are below.
Physical situation | Nomenclature | Equations | |||
---|---|---|---|---|---|
Mean speed | \langlev\rangle=\sqrt{
| ||||
Root mean square speed | vrms=\sqrt{\langlev2\rangle}=\sqrt{
| ||||
Modal speed | vmode=\sqrt{
| ||||
Mean free path |
| \ell=1/\sqrt{2}n\sigma | |||
For quasi-static and reversible processes, the first law of thermodynamics is:
dU=\deltaQ-\deltaW
See main article: Thermodynamic potentials.
See also: Maxwell relations.
The following energies are called the thermodynamic potentials,
and the corresponding fundamental thermodynamic relations or "master equations"[2] are:
Potential | Differential |
---|---|
Internal energy | dU\left(S,V,{Ni |
Enthalpy | dH\left(S,p,{Ni |
Helmholtz free energy | dF\left(T,V,{Ni |
Gibbs free energy | dG\left(T,p,{Ni |
The four most common Maxwell's relations are:
More relations include the following.
\left({\partialS\over\partialU}\right)V,N={1\overT} | \left({\partialS\over\partialV}\right)N,U={p\overT} | \left({\partialS\over\partialN}\right)V,U=-{\mu\overT} |
\left({\partialT\over\partialS}\right)V={T\overCV} | \left({\partialT\over\partialS}\right)P={T\overCP} | |
-\left({\partialp\over\partialV}\right)T={1\over{VKT}} | ||
Other differential equations are:
Name | H | U | G | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gibbs–Helmholtz equation | H=
\right)p | U=
\right)V | G=
\right)T | |||||||||||||||||||||
\right)T=V-T\left(
\right)P |
\right)T=T\left(
\right)V-P | |||||||||||||||||||||||
U=NkBT2\left(
\partiallnZ | |
\partialT |
\right)V
S=
U | |
T |
+NkBlnZ-NklnN+Nk
Degree of freedom | Partition function | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Translation | Zt=
| ||||||||||||
Vibration | Zv=
| ||||||||||||
Rotation | Zr=
|
Coefficients | Equation | |||||||
---|---|---|---|---|---|---|---|---|
Joule-Thomson coefficient | \muJT=\left(
\right)H | |||||||
Compressibility (constant temperature) | KT=-{1\overV}\left({\partialV\over\partialp}\right)T,N | |||||||
Coefficient of thermal expansion (constant pressure) | \alphap=
\right)p | |||||||
Heat capacity (constant pressure) | Cp =\left({\partialQrev\over\partialT}\right)p =\left({\partialU\over\partialT}\right)p+p\left({\partialV\over\partialT}\right)p=\left({\partialH\over\partialT}\right)p =T\left({\partialS\over\partialT}\right)p | |||||||
Heat capacity (constant volume) | CV =\left({\partialQrev\over\partialT}\right)V =\left({\partialU\over\partialT}\right)V =T\left({\partialS\over\partialT}\right)V | |||||||
Physical situation | Nomenclature | Equations | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Net intensity emission/absorption |
| I=\sigma\epsilon\left(
-
\right) | ||||||||||||
Internal energy of a substance |
| \DeltaU=NCV\DeltaT | ||||||||||||
Meyer's equation |
| Cp-CV=nR | ||||||||||||
Effective thermal conductivities |
| Series λnet=\sumjλj Parallel
net=\sumj\left(
j\right) | ||||||||||||
Physical situation | Nomenclature | Equations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Thermodynamic engines |
| Thermodynamic engine: η=\left | \frac \right | Carnot engine efficiency: ηc=1-\left | \frac \right | = 1-\frac | ||||
Refrigeration | K = coefficient of refrigeration performance | Refrigeration performance K=\left | \frac \right | Carnot refrigeration performance KC=
=
| ||||||