The connected 3-regular (cubic) simple graphs are listed for small vertex numbers.
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... . A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual. This leaves the other graphs in the 3-connected class because each3-regular graph can be split by cutting all edges adjacent to any of the vertices. To refine this definition in the light of the algebra of coupling of angular momenta (see below), a subdivision of the 3-connected graphs is helpful. We shall call
This declares the numbers 3 and 4 in the fourth column of the tables below.
Ball-and-stick models of the graphs in another column of thetable show the vertices and edges in the style ofimages of molecular bonds.Comments on the individual pictures containgirth, diameter, Wiener index,Estrada index and Kirchhoff index. Aut is the order of the Automorphism group of the graph.A Hamiltonian circuit (where present) is indicated by enumerating verticesalong that path from 1 upwards.(The positions of the vertices have been defined by minimizing a pair potential defined by the squared difference of the Euclidean and graph theoretic distance, placed in a Molfile, then rendered by Jmol.)
The LCF notation is a notation by Joshua Lederberg, Coxeter and Frucht, for the representation of cubic graphs that are Hamiltonian.
The two edges along the cycle adjacent to any of the vertices are not written down.
Let be the vertices of the graph and describe the Hamiltonian circle along the vertices by the edge sequence . Halting at a vertex, there is one unique vertex at a distance joined by a chord with,
j=i+di (\bmodp), 2\ledi\lep-2.
Since the starting vertex of the path is of no importance, the numbers in the representation may be cyclically permuted. If a graph contains different Hamiltonian circuits, one may select one of these to accommodate the notation. The same graph may have different LCF notations, depending on precisely how the vertices are arranged.
Often the anti-palindromic representations with
dp-1-i=-di (\bmodp), i=0,1,\ldotsp/2-1
diam. | girth | Aut. | connect. | LCF | picture | ||
1 | 3 | 24 | 4 | [2]4 |
diam. | girth | Aut. | connect. | LCF | picture | ||
2 | 3 | 12 | 3 | [2, 3, −2]2 | prism graph Y3 | ||
2 | 4 | 72 | 4 | [3]6 | K3, 3, utility graph |
diam. | girth | Aut. | connect. | LCF | pictures | |
3 | 3 | 16 | 2 | [2, 2, −2, −2]2 | ||
3 | 3 | 4 | 3 | [4, −2, 4, 2]2 or [2, 3, −2, 3; –] | ||
2 | 3 | 12 | 3 | [2, 4, −2, 3, 3, 4, −3, −3] | ||
3 | 4 | 48 | 4 | [−3, 3]4 | ||
2 | 4 | 16 | 4 | [4]8 or [4, −3, 3, 4]2 | ||
diam. | girth | Aut. | connect. | LCF | pictures | ||
5 | 3 | 32 | 1 | Edge list 0–1, 0–6, 0–9, 1–2, 1–5, 2–3, 2–4, 3–4, 3–5, 4–5, 6–7, 6–8, 7–8, 7–9, 8–9 | |||
4 | 3 | 4 | 2 | [4, 2, 3, −2, −4, −3, 2, 2, −2, −2] | |||
3 | 3 | 8 | 2 | [2, −3, −2, 2, 2; –] | |||
3 | 3 | 16 | 2 | [−2, −2, 3, 3, 3; –] | |||
4 | 3 | 16 | 2 | [2, 2, −2, −2, 5]2 | |||
3 | 3 | 2 | 3 | [2, 3, −2, 5, −3]2 [3, −2, 4, −3, 4, 2, −4, −2, −4, 2] | |||
3 | 3 | 12 | 3 | [2, −4, −2, 5, 2, 4, −2, 4, 5, −4] | |||
3 | 3 | 2 | 3 | [5, 3, 5, −4, −3, 5, 2, 5, −2, 4] [−4, 2, 5, −2, 4, 4, 4, 5, −4, −4] [−3, 2, 4, −2, 4, 4, −4, 3, −4, −4] | |||
3 | 3 | 4 | 3 | [−4, 3, 3, 5, −3, −3, 4, 2, 5, −2] [3, −4, −3, −3, 2, 3, −2, 4, −3, 3] | |||
3 | 3 | 6 | 3 | [3, −3, 5, −3, 2, 4, −2, 5, 3, −4] | |||
3 | 3 | 4 | 3 | [2, 3, −2, 3, −3; –] [−4, 4, 2, 5, −2]2 | |||
3 | 3 | 6 | 3 | [5, −2, 2, 4, −2, 5, 2, −4, −2, 2] | |||
3 | 3 | 8 | 3 | [2, 5, −2, 5, 5]2 [2, 4, −2, 3, 4; –] | |||
3 | 4 | 48 | 3 | [5, −3, −3, 3, 3]2 | |||
3 | 4 | 8 | 4 | [5, −4, 4, −4, 4]2 [5, −4, −3, 3, 4, 5, −3, 4, −4, 3] | |||
3 | 4 | 4 | 4 | [5, −4, 4, 5, 5]2 [−3, 4, −3, 3, 4; –] [4, −3, 4, 4, −4; –] [−4, 3, 5, 5, −3, 4, 4, 5, 5, −4] | |||
3 | 4 | 20 | 4 | [5]10 [−3, 3]5 [5, 5, −3, 5, 3]2 | |||
3 | 4 | 20 | 4 | [−4, 4, −3, 5, 3]2 | Pentagonal prism, G5, 2 | ||
2 | 5 | 120 | 4 |
diam. | girth | Aut. | connect. | LCF | picture | ||
6 | 3 | 16 | 1 | Edge list 0–1, 0–2, 0–11, 1–2, 1–6, 2–3, 3–4, 3–5, 4–5, 4–6, 5–6, 7–8, 7–9, 7–11, 8–9, 8–10, 9–10, 10–11 | |||
5 | 3 | 16 | 1 | Edge list 0–1, 0–6, 0–11, 1–2, 1–3, 2–3, 2–5, 3–4, 4–5, 4–6, 5–6, 7–8, 7–9, 7–11, 8–9, 8–10, 9–10, 10–11 | |||
6 | 3 | 8 | 1 | Edge list 0–1, 0–3, 0–11, 1–2, 1–6, 2–3, 2–5, 3–4, 4–5, 4–6, 5–6, 7–8, 7–9, 7–11, 8–9, 8–10, 9–10, 10–11 | |||
5 | 3 | 32 | 1 | Edge list 0–1, 0–6, 0–11, 1–2, 1–4, 2–3, 2–5, 3–4, 3–6, 4–5, 5–6, 7–8, 7–9, 7–11, 8–9, 8–10, 9–10, 10–11 | |||
5 | 3 | 4 | 2 | [3, −2, −4, −3, 4, 2]2 [4, 2, 3, −2, −4, −3; –] | |||
4 | 3 | 8 | 2 | [3, −2, −4, −3, 3, 3, 3, −3, −3, −3, 4, 2] | |||
4 | 3 | 4 | 2 | [4, 2, 3, −2, −4, −3, 2, 3, −2, 2, −3, −2] | |||
4 | 4 | 64 | 2 | [3, 3, 3, −3, −3, −3]2 | |||
4 | 3 | 16 | 2 | [2, −3, −2, 3, 3, 3; –] | |||
4 | 3 | 16 | 2 | [2, 3, −2, 2, −3, −2]2 | |||
4 | 3 | 2 | 2 | [−2, 3, 6, 3, −3, 2, −3, −2, 6, 2, 2, −2] [4, 2, −4, −2, −4, 6, 2, 2, −2, −2, 4, 6] | |||
4 | 3 | 8 | 2 | [6, 3, 3, 4, −3, −3, 6, −4, 2, 2, −2, −2] | |||
5 | 3 | 4 | 2 | [4, 2, 3, −2, −4, −3, 5, 2, 2, −2, −2, −5] | |||
4 | 3 | 16 | 2 | [−3, −3, −3, 5, 2, 2; –] | |||
4 | 3 | 8 | 2 | [2, −3, −2, 5, 2, 2; –] | |||
4 | 3 | 4 | 2 | [2, 4, −2, 3, −5, −4, −3, 2, 2, −2, −2, 5] [5, 2, −4, −2, −5, −5, 2, 2, −2, −2, 4, 5] | |||
4 | 3 | 4 | 2 | [−2, −2, 4, 4, 4, 4; –] [3, −4, −4, −3, 2, 2; –] [5, 3, 4, 4, −3, −5, −4, −4, 2, 2, −2, −2] | |||
4 | 3 | 2 | 2 | [4, −2, 4, 2, −4, −2, −4, 2, 2, −2, −2, 2] [5, −2, 2, 3, −2, −5, −3, 2, 2, −2, −2, 2] | |||
5 | 3 | 16 | 2 | [2, 2, −2, −2, −5, 5]2 | |||
4 | 3 | 8 | 2 | [−2, −2, 4, 5, 3, 4; –] | |||
4 | 3 | 4 | 2 | [5, 2, −3, −2, 6, −5, 2, 2, −2, −2, 6, 3] | |||
4 | 3 | 8 | 2 | [4, −2, 3, 3, −4, −3, −3, 2, 2, −2, −2, 2] | |||
4 | 3 | 8 | 2 | [−2, −2, 5, 3, 5, 3; –] [−2, −2, 3, 5, 3, −3; –] | |||
5 | 3 | 32 | 2 | [2, 2, −2, −2, 6, 6]2 | |||
4 | 3 | 8 | 2 | [−3, 2, −3, −2, 2, 2; –] | |||
4 | 3 | 8 | 2 | [−2, −2, 5, 2, 5, −2; –] | |||
4 | 3 | 8 | 2 | [6, −2, 2, 2, −2, −2, 6, 2, 2, −2, −2, 2] | |||
4 | 3 | 48 | 2 | [−2, −2, 2, 2]3 | |||
4 | 3 | 4 | 3 | [2, 3, −2, 3, −3, 3; –] [−4, 6, 4, 2, 6, −2]2 | |||
4 | 3 | 4 | 3 | [−4, 6, 3, 3, 6, −3, −3, 6, 4, 2, 6, −2] [−2, 3, −3, 4, −3, 3, 3, −4, −3, −3, 2, 3] | |||
4 | 3 | 1 | 3 | [−5, 2, −3, −2, 6, 4, 2, 5, −2, −4, 6, 3] [−2, 3, −3, 4, −3, 4, 2, −4, −2, −4, 2, 3] [3, −2, 3, −3, 5, −3, 2, 3, −2, −5, −3, 2] | |||
3 | 3 | 4 | 3 | [−5, −5, 4, 2, 6, −2, −4, 5, 5, 2, 6, −2] [4, −2, 3, 4, −4, −3, 3, −4, 2, −3, −2, 2] | |||
3 | 3 | 8 | 3 | [−5, −5, 3, 3, 6, −3, −3, 5, 5, 2, 6, −2] [2, 4, −2, 3, 5, −4, −3, 3, 3, −5, −3, −3] | |||
4 | 3 | 2 | 3 | [2, 4, −2, 3, 6, −4, −3, 2, 3, −2, 6, −3] [2, 4, −2, 3, 5, −4, −3, 4, 2, −5, −2, −4] [−5, 2, −3, −2, 5, 5, 2, 5, −2, −5, −5, 3] | |||
4 | 3 | 2 | 3 | [−5, 2, −3, −2, 6, 3, 3, 5, −3, −3, 6, 3] [4, −2, −4, 4, −4, 3, 3, −4, −3, −3, 4, 2] [−3, 3, 3, 4, −3, −3, 5, −4, 2, 3, −2, −5] | |||
4 | 3 | 2 | 3 | [2, 3, −2, 4, −3, 6, 3, −4, 2, −3, −2, 6] [−4, 5, −4, 2, 3, −2, −5, −3, 4, 2, 4, −2] | |||
4 | 3 | 1 | 3 | [6, 3, −4, −4, −3, 3, 6, 2, −3, −2, 4, 4] [−5, −4, 4, 2, 6, −2, −4, 5, 3, 4, 6, −3] [3, 4, 4, −3, 4, −4, −4, 3, −4, 2, −3, −2] [4, 5, −4, −4, −4, 3, −5, 2, −3, −2, 4, 4] [4, 5, −3, −5, −4, 3, −5, 2, −3, −2, 5, 3] | |||
3 | 4 | 4 | 3 | [4, 6, −4, −4, −4, 3, 3, 6, −3, −3, 4, 4] [−5, −4, 3, 3, 6, −3, −3, 5, 3, 4, 6, −3] [4, −3, 5, −4, −4, 3, 3, −5, −3, −3, 3, 4] | |||
3 | 4 | 16 | 3 | [3, 3, 4, −3, −3, 4; –] [3, 6, −3, −3, 6, 3]2 | |||
4 | 3 | 1 | 3 | [4, −2, 5, 2, −4, −2, 3, −5, 2, −3, −2, 2] [5, −2, 2, 4, −2, −5, 3, −4, 2, −3, −2, 2] [2, −5, −2, −4, 2, 5, −2, 2, 5, −2, −5, 4] | |||
4 | 3 | 4 | 3 | [−2, 6, 2, −4, −2, 3, 3, 6, −3, −3, 2, 4] [−2, 2, 5, −2, −5, 3, 3, −5, −3, −3, 2, 5] | |||
4 | 3 | 2 | 3 | [2, 4, −2, 6, 2, −4, −2, 4, 2, 6, −2, −4] [2, 5, −2, 2, 6, −2, −5, 2, 3, −2, 6, −3] | |||
4 | 3 | 2 | 3 | [6, 3, −3, −5, −3, 3, 6, 2, −3, −2, 5, 3] [3, 5, 3, −3, 4, −3, −5, 3, −4, 2, −3, −2] [−5, −3, 4, 2, 5, −2, −4, 5, 3, −5, 3, −3] | |||
4 | 4 | 12 | 3 | [3, −3, 5, −3, −5, 3, 3, −5, −3, −3, 3, 5] | |||
4 | 3 | 2 | 3 | [4, 2, 4, −2, −4, 4; –] [3, 5, 2, −3, −2, 5; –] [6, 2, −3, −2, 6, 3]2 | |||
4 | 3 | 2 | 3 | [3, 6, 4, −3, 6, 3, −4, 6, −3, 2, 6, −2] [4, −4, 5, 3, −4, 6, −3, −5, 2, 4, −2, 6] [−5, 5, 3, −5, 4, −3, −5, 5, −4, 2, 5, −2] | |||
3 | 3 | 1 | 3 | [6, −5, 2, 6, −2, 6, 6, 3, 5, 6, −3, 6] [6, 2, −5, −2, 4, 6, 6, 3, −4, 5, −3, 6] [5, 5, 6, 4, 6, −5, −5, −4, 6, 2, 6, −2] [−4, 4, −3, 3, 6, −4, −3, 2, 4, −2, 6, 3] [6, 2, −4, −2, 4, 4, 6, 4, −4, −4, 4, −4] [−3, 2, 5, −2, −5, 3, 4, −5, −3, 3, −4, 5] [−5, 2, −4, −2, 4, 4, 5, 5, −4, −4, 4, −5] | |||
3 | 3 | 2 | 3 | [2, 6, −2, 5, 6, 4, 5, 6, −5, −4, 6, −5] [5, 6, −4, −4, 5, −5, 2, 6, −2, −5, 4, 4] [2, 4, −2, −5, 4, −4, 3, 4, −4, −3, 5, −4] [2, −5, −2, 4, −5, 4, 4, −4, 5, −4, −4, 5] | |||
4 | 3 | 4 | 3 | [2, 4, −2, −5, 5]2 [−5, 2, 4, −2, 6, 3, −4, 5, −3, 2, 6, −2] | |||
4 | 3 | 2 | 3 | [−4, −4, 4, 2, 6, −2, −4, 4, 4, 4, 6, −4] [−4, −3, 4, 2, 5, −2, −4, 4, 4, −5, 3, −4] [−3, 5, 3, 4, −5, −3, −5, −4, 2, 3, −2, 5] | |||
3 | 3 | 2 | 3 | [2, 5, −2, 4, 4, 5; –] [2, 4, −2, 4, 4, −4; –] [−5, 5, 6, 2, 6, −2]2 [5, −2, 4, 6, 3, −5, −4, −3, 2, 6, −2, 2] | |||
3 | 3 | 2 | 3 | [3, 6, −4, −3, 5, 6, 2, 6, −2, −5, 4, 6] [2, −5, −2, 4, 5, 6, 4, −4, 5, −5, −4, 6] [5, −4, 4, −4, 3, −5, −4, −3, 2, 4, −2, 4] | |||
4 | 3 | 2 | 3 | [6, −5, 2, 4, −2, 5, 6, −4, 5, 2, −5, −2] [−2, 4, 5, 6, −5, −4, 2, −5, −2, 6, 2, 5] [5, −2, 4, −5, 4, −5, −4, 2, −4, −2, 5, 2] | |||
4 | 3 | 1 | 3 | [2, −5, −2, 6, 3, 6, 4, −3, 5, 6, −4, 6] [6, 3, −3, 4, −3, 4, 6, −4, 2, −4, −2, 3] [5, −4, 6, −4, 2, −5, −2, 3, 6, 4, −3, 4] [5, −3, 5, 6, 2, −5, −2, −5, 3, 6, 3, −3] [−5, 2, −5, −2, 6, 3, 5, 5, −3, 5, 6, −5] [−3, 4, 5, −5, −5, −4, 2, −5, −2, 3, 5, 5] [5, 5, 5, −5, 4, −5, −5, −5, −4, 2, 5, −2] | |||
3 | 3 | 2 | 3 | [5, −3, 6, 3, −5, −5, −3, 2, 6, −2, 3, 5] [2, 6, −2, −5, 5, 3, 5, 6, −3, −5, 5, −5] [5, 5, 5, 6, −5, −5, −5, −5, 2, 6, −2, 5] [4, −3, 5, 2, −4, −2, 3, −5, 3, −3, 3, −3] [5, 5, −3, −5, 4, −5, −5, 2, −4, −2, 5, 3] | |||
4 | 3 | 4 | 3 | [2, 4, −2, 5, 3, −4; –] [5, −3, 2, 5, −2, −5; –] [3, 6, 3, −3, 6, −3, 2, 6, −2, 2, 6, −2] | |||
4 | 3 | 2 | 3 | [6, 2, −4, −2, −5, 3, 6, 2, −3, −2, 4, 5] [2, 3, −2, 4, −3, 4, 5, −4, 2, −4, −2, −5] [−5, 2, −4, −2, −5, 4, 2, 5, −2, −4, 4, 5] | |||
3 | 3 | 2 | 3 | [5, 2, 5, −2, 5, −5; –] [6, 2, −4, −2, 4, 6]2 [2, −5, −2, 6, 2, 6, −2, 3, 5, 6, −3, 6] [−5, −2, 6, 6, 2, 5, −2, 5, 6, 6, −5, 2] | |||
3 | 3 | 12 | 3 | [−5, 3, 3, 5, −3, −3, 4, 5, −5, 2, −4, −2] | |||
3 | 3 | 2 | 3 | [6, −4, 3, 4, −5, −3, 6, −4, 2, 4, −2, 5] [−4, 6, −4, 2, 5, −2, 5, 6, 4, −5, 4, −5] [5, −5, 4, −5, 3, −5, −4, −3, 5, 2, 5, −2] | |||
4 | 3 | 12 | 3 | [−4, 5, 2, −4, −2, 5; –] | |||
3 | 3 | 4 | 3 | [2, 5, −2, 5, 3, 5; –] [6, −2, 6, 6, 6, 2]2 [5, −2, 6, 6, 2, −5, −2, 3, 6, 6, −3, 2] | |||
3 | 3 | 4 | 3 | [6, −2, 6, 4, 6, 4, 6, −4, 6, −4, 6, 2] [5, 6, −3, 3, 5, −5, −3, 6, 2, −5, −2, 3] | |||
3 | 3 | 4 | 3 | [4, −2, 4, 6, −4, 2, −4, −2, 2, 6, −2, 2] [5, −2, 5, 6, 2, −5, −2, −5, 2, 6, −2, 2] | |||
3 | 3 | 24 | 3 | [6, −2, 2]4 | |||
3 | 3 | 12 | 3 | ||||
3 | 3 | 36 | 3 | [2, 6, −2, 6]3 | |||
4 | 4 | 24 | 4 | [−3, 3]6 [3, −5, 5, −3, −5, 5]2 | G6, 2, Y6 | ||
3 | 4 | 4 | 4 | [6, −3, 6, 6, 3, 6]2 [6, 6, −5, 5, 6, 6]2 [3, −3, 4, −3, 3, 4; –] [5, −3, 6, 6, 3, −5]2 [5, −3, −5, 4, 4, −5; –] [6, 6, −3, −5, 4, 4, 6, 6, −4, −4, 5, 3] | |||
3 | 4 | 8 | 4 | [−4, 4, 4, 6, 6, −4]2 [6, −5, 5, −5, 5, 6]2 [4, −3, 3, 5, −4, −3; –] [−4, −4, 4, 4, −5, 5]2 | |||
3 | 4 | 2 | 4 | [−4, 6, 3, 6, 6, −3, 5, 6, 4, 6, 6, −5] [−5, 4, 6, 6, 6, −4, 5, 5, 6, 6, 6, −5] [5, −3, 4, 6, 3, −5, −4, −3, 3, 6, 3, −3] [4, −4, 6, 4, −4, 5, 5, −4, 6, 4, −5, −5] [4, −5, −3, 4, −4, 5, 3, −4, 5, −3, −5, 3] | |||
3 | 4 | 2 | 4 | [3, 4, 5, −3, 5, −4; –] [3, 6, −4, −3, 4, 6]2 [−4, 5, 5, −4, 5, 5; –] [3, 6, −4, −3, 4, 4, 5, 6, −4, −4, 4, −5] [4, −5, 5, 6, −4, 5, 5, −5, 5, 6, −5, −5] [4, −4, 5, −4, −4, 3, 4, −5, −3, 4, −4, 4] | |||
3 | 4 | 8 | 4 | [4, −4, 6]4 [3, 6, 3, −3, 6, −3]2 [−3, 6, 4, −4, 6, 3, −4, 6, −3, 3, 6, 4] | |||
3 | 4 | 16 | 4 | [6, −5, 5]4 [3, 4, −4, −3, 4, −4]2 | |||
3 | 4 | 2 | 4 | [−3, 5, −3, 4, 4, 5; –] [4, −5, 5, 6, −4, 6]2 [−3, 4, −3, 4, 4, −4; –] [5, 6, −3, −5, 4, −5, 3, 6, −4, −3, 5, 3] [5, 6, 4, −5, 5, −5, −4, 6, 3, −5, 5, −3] | |||
3 | 4 | 4 | 4 | [4, −3, 4, 5, −4, 4; –] [4, 5, −5, 5, −4, 5; –] [−5, −3, 4, 5, −5, 4; –] | |||
3 | 4 | 2 | 4 | [6, −4, 6, −4, 3, 5, 6, −3, 6, 4, −5, 4] [6, −4, 3, −4, 4, −3, 6, 3, −4, 4, −3, 4] [5, 6, −4, 3, 5, −5, −3, 6, 3, −5, 4, −3] [5, −5, 4, 6, −5, −5, −4, 3, 5, 6, −3, 5] [5, 5, −4, 4, 5, −5, −5, −4, 3, −5, 4, −3] | |||
3 | 4 | 4 | 4 | [6, −3, 5, 6, −5, 3, 6, −5, −3, 6, 3, 5] [3, −4, 5, −3, 4, 6, 4, −5, −4, 4, −4, 6] | |||
3 | 4 | 8 | 4 | [5, 6, 6, −4, 5, −5, 4, 6, 6, −5, −4, 4] | |||
3 | 5 | 16 | 4 | [4, −5, 4, −5, −4, 4; –] | |||
3 | 4 | 4 | 4 | [6, 4, 6, 6, 6, −4]2 [−3, 4, −3, 5, 3, −4; –] [−5, 3, 6, 6, −3, 5, 5, 5, 6, 6, −5, −5] [−3, 3, 6, 4, −3, 5, 5, −4, 6, 3, −5, −5] | |||
4 | 4 | 8 | 4 | [3, 5, 5, −3, 5, 5; –] [−3, 5, −3, 5, 3, 5; –] [5, −3, 5, 5, 5, −5; –] | |||
3 | 4 | 48 | 4 | [5, −5, −3, 3]3 [−5, 5]6 | |||
3 | 4 | 24 | 4 | [6]12 [6, 6, −3, −5, 5, 3]2 | |||
3 | 5 | 18 | 4 | [6, −5, −4, 4, −5, 4, 6, −4, 5, −4, 4, 5] |
The LCF entries are absent above if the graph has no Hamiltonian cycle, which is rare (see Tait's conjecture). In this case a list of edges between pairs of vertices labeled 0 to n−1 in the third column serves as an identifier.
Each 4-connected (in the above sense) simple cubic graph on vertices defines a class of quantum mechanical j symbols. Roughly speaking, each vertex represents a 3-jm symbol, the graph is converted to a digraph by assigning signs to the angular momentum quantum numbers, the vertices are labelled with a handedness representing the order of the three (of the three edges) in the 3jm symbol, and the graph represents a sum over the product of all these numbers assigned to the vertices.
There are 1 (6j), 1 (9j), 2 (12j), 5 (15j), 18 (18j), 84 (21j), 607 (24j), 6100 (27j), 78824 (30j), 1195280 (33j), 20297600 (36j), 376940415 (39j) etc. of these .
If they are equivalent to certain vertex-induced binary trees (cutting one edge and finding a cut that splits the remaining graph into two trees), they are representations of recoupling coefficients, and are then also known as Yutsis graphs .