Table of polyhedron dihedral angles explained

The dihedral angles for the edge-transitive polyhedra are:

PictureNameSchläfli
symbol
Vertex/Face
configuration
exact dihedral angle
(radians)
dihedral angle
 - exact in bold,
else approximate
(degrees)
Platonic solids (regular convex)
Tetrahedron(3.3.3)arccos 70.529°
Hexahedron or Cube(4.4.4)arccos (0) = 90°
Octahedron(3.3.3.3)arccos (-)109.471°
Dodecahedron(5.5.5)arccos (-)116.565°
Icosahedron(3.3.3.3.3)arccos (-)138.190°
Kepler–Poinsot solids (regular nonconvex)
Small stellated dodecahedron(....)arccos (-)116.565°
Great dodecahedronarccos 63.435°
Great stellated dodecahedron(..)arccos 63.435°
Great icosahedronarccos 41.810°
Quasiregular polyhedra (Rectified regular)
Tetratetrahedronr(3.3.3.3)arccos (-)109.471°
Cuboctahedronr(3.4.3.4)arccos (-)125.264°
Icosidodecahedronr(3.5.3.5)

\arccos{\left(-

1
15

\sqrt{75+30\sqrt5}\right)}

142.623°
Dodecadodecahedronr(5..5.)arccos (-)116.565°
Great icosidodecahedronr(3..3.)

\arccos{\left(

1
15

\sqrt{75+30\sqrt5}\right)}

37.377°
Ditrigonal polyhedra
Small ditrigonal icosidodecahedrona(3..3..3.)
Ditrigonal dodecadodecahedronb(5..5..5.)
Great ditrigonal icosidodecahedronc
Hemipolyhedra
Tetrahemihexahedrono(3.4..4)arccos 54.736°
Cubohemioctahedrono(4.6..6)arccos 54.736°
Octahemioctahedrono(3.6..6)arccos 70.529°
Small dodecahemidodecahedrono(5.10..10)

\arccos{\left(

1
15

\sqrt{195-6\sqrt5}\right)}

26.058°
Small icosihemidodecahedrono(3.10..10)arccos (-)116.56°
Great dodecahemicosahedrono(5.6..6)
Small dodecahemicosahedrono(.6..6)
Great icosihemidodecahedrono(3...)
Great dodecahemidodecahedrono(...)
Quasiregular dual solids
Rhombic hexahedron
(Dual of tetratetrahedron)
V(3.3.3.3)arccos (0) = 90°
Rhombic dodecahedron
(Dual of cuboctahedron)
V(3.4.3.4)arccos (-) = 120°
Rhombic triacontahedron
(Dual of icosidodecahedron)
V(3.5.3.5)arccos (-) = 144°
Medial rhombic triacontahedron
(Dual of dodecadodecahedron)
V(5..5.)arccos (-) = 120°
Great rhombic triacontahedron
(Dual of great icosidodecahedron)
V(3..3.)arccos = 72°
Duals of the ditrigonal polyhedra
Small triambic icosahedron
(Dual of small ditrigonal icosidodecahedron)
V(3..3..3.)
Medial triambic icosahedron
(Dual of ditrigonal dodecadodecahedron)
V(5..5..5.)
Great triambic icosahedron
(Dual of great ditrigonal icosidodecahedron)
V
Duals of the hemipolyhedra
Tetrahemihexacron
(Dual of tetrahemihexahedron)
V(3.4..4)90°
Hexahemioctacron
(Dual of cubohemioctahedron)
V(4.6..6)120°
Octahemioctacron
(Dual of octahemioctahedron)
V(3.6..6)120°
Small dodecahemidodecacron
(Dual of small dodecahemidodecacron)
V(5.10..10)144°
Small icosihemidodecacron
(Dual of small icosihemidodecacron)
V(3.10..10)144°
Great dodecahemicosacron
(Dual of great dodecahemicosahedron)
V(5.6..6)120°
Small dodecahemicosacron
(Dual of small dodecahemicosahedron)
V(.6..6)120°
Great icosihemidodecacron
(Dual of great icosihemidodecacron)
V(3...)72°
Great dodecahemidodecacron
(Dual of great dodecahemidodecacron)
V(...)72°

References