This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.
\limxf(x)=L
The limit superior and limit inferior of a sequence are defined as
\limsupnxn=\limn\left(\supmxm\right)
\liminfnxn=\limn\left(infmxm\right)
A function,
f(x)
If
\limxf(x)=L
\limx[f(x)\pma]=L\pma
\limxaf(x)=aL
\limx
1 | |
f(x) |
=
1L | |
\limxf(x)n=Ln
\limxf(x)1=L1
\limxf(x)=L
\limxg\left(f(x)\right)=g(L)
If
\limxf(x)=L1
\limxg(x)=L2
\limx[f(x)\pmg(x)]=L1\pmL2
\limx[f(x)g(x)]=L1 ⋅ L2
\limx
f(x) | |
g(x) |
=
L1 | |
L2 |
ifL2\ne0
In these limits, the infinitesimal change
h
\Deltax
\deltax
f(x)
x
\limh{f(x+h)-f(x)\overh}=f'(x)
\limh{f\circg(x+h)-f\circg(x)\overh}=f'[g(x)]g'(x)
\limh{f(x+h)g(x+h)-f(x)g(x)\overh}=f'(x)g(x)+f(x)g'(x)
\limh\left(
f(x+h) | |
f(x) |
\right)1/h=\exp\left(
f'(x) | |
f(x) |
\right)
\limh{\left({f(ehx)\over{f(x)}}\right)1/h}=\exp\left(
xf'(x) | |
f(x) |
\right)
If
f(x)
g(x)
\limxf(x)=\limxg(x)=0or\pminfty
\limx
f(x) | |
g(x) |
=\limx
f'(x) | |
g'(x) |
If
f(x)\leqg(x)
f(x)
g(x)
If
\limxf(x)=\limxh(x)=L
f(x)\leqg(x)\leqh(x)
\limxa=a
\limxx=c
\limx(ax+b)=ac+b
\limxxn=cn
\limx\toinftyx/a=\begin{cases} infty,&a>0\\ doesnotexist,&a=0\\ -infty,&a<0\end{cases}
In general, if
p(x)
\limx\toxa=ca.
\limx\toinftyxa=\begin{cases}infty,&a>0\ 1,&a=0\ 0,&a<0\end{cases}
\limx\tox1/a=c1/a
\limx\toinftyx1/a=\limx\toinfty\sqrt[a]{x}=inftyforanya>0
\lim | |
x\to0+ |
x-n
=\lim | |
x\to0+ |
1 | |
xn |
=+infty
\lim | |
x\to0- |
x-n
=\lim | |
x\to0- |
1 | |
xn |
=\begin{cases} -infty,&ifnisodd\\ +infty,&ifniseven \end{cases}
\limx\toinftyax-1=\limx\toinftya/x=0foranyreala
\limxex=ec
ex
\limx\toinftyax=\begin{cases}infty,&a>1\ 1,&a=1\ 0,&0<a<1\end{cases}
\limx\toinftya-x=\begin{cases}0,&a>1\ 1,&a=1\ infty,&0<a<1\end{cases}
\limx\toinfty\sqrt[x]{a}=\limx\toinfty{a}1/x=\begin{cases} 1,&a>0\\ 0,&a=0\\ doesnotexist,&a<0 \end{cases}
\limx\toinfty\sqrt[x]{x}=\limx\toinfty{x}1/x=1
\limx\to+infty\left(
x | |
x+k |
\right)x=e-k
\limx\to
| ||||
\left(1+x\right) |
=e
\limx\to
| ||||
\left(1+kx\right) |
=emk
\limx\to+infty\left(1+
1 | |
x |
\right)x=e
\limx\to+infty\left(1-
1 | |
x |
| ||||
\right) |
\limx\to+infty\left(1+
k | |
x |
\right)mx=emk
\limx\left(1+a\left({e-x-
| ||||
1}\right)\right) |
=ea
\limxxe-x=0
\limxxe-x=0
\limx\left(
ax-1 | |
x |
\right)=ln{a},
\limx\left(
ex-1 | |
x |
\right)=1
\limx\left(
eax-1 | |
x |
\right)=a
\limxln{x}=lnc
ln{x}
\lim | |
x\to0+ |
logx=-infty
\limx\toinftylogx=infty
\limx\to1
ln(x) | |
x-1 |
=1
\limx\to0
ln(x+1) | |
x |
=1
\limx
-ln\left(1+a\left({e-x-1 | |
\right)\right)}{x} |
=a
\limxxlnx=0
\limxxx=1
\limx
lnx | |
x |
=0
For b > 1,
\lim | |
x\to0+ |
logbx=-infty
\limxlogbx=infty
\lim | |
x\to0+ |
logbx=infty
\limxlogbx=-infty
\lim | |
x\to0+ |
logbx=-F(b)infty
\limxlogbx=F(b)infty
F(x)=2H(x-1)-1
H(x)
If
x
\limx\sinx=\sina
\limx\cosx=\cosa
These limits both follow from the continuity of sin and cos.
\limx
\sinx | |
x |
=1
\limx
\sinax | |
ax |
=1
\limx
\sinax | |
x |
=a
\limx
\sinax | |
bx |
=
a | |
b |
\limxx\sin\left(
1x\right) | |
= |
1
\limx
1-\cosx | |
x |
=\limx
\cosx-1 | |
x |
=0
\limx
1-\cosx | |
x2 |
=
1 | |
2 |
\lim | |
x\ton\pm |
\tan\left(\pix+
\pi | |
2 |
\right)=\mpinfty
\limx
\tanx | |
x |
=1
\limx
\tanax | |
ax |
=1
\limx
\tanax | |
bx |
=
a | |
b |
\limn\to \underbrace{\sin\sin … \sin(x0)}n=0
\limn\to \underbrace{\cos\cos … \cos(x0)}n=d
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.
\limn
| ||||
\sum | ||||
k=1 |
=infty
\limn\toinfty\left(
n | |
\sum | |
k=1 |
1 | |
k |
-logn\right)=\gamma
\limn\toinfty
n | |
\sqrt[n]{n! |
\limn\toinfty\left(n!\right)1/n=infty
ex\geq
xn | |
n! |
x=n
\limn\to2n\underbrace{\sqrt{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}n=\pi
f(x)\simg(x)
\limx\toinfty
f(x) | |
g(x) |
=1
\limx\toinfty
x/lnx | |
\pi(x) |
=1
\pi(x)\sim | x |
lnx |
\limn\toinfty
\sqrt{2\pin | |||
|
\right)n}{n!}=1
n!\sim\sqrt{2\pin}\left(
n | |
e |
\right)n
The behaviour of functions described by Big O notation can also be described by limits. For example
f(x)\inl{O}(g(x))
\limsupx\toinfty
|f(x)| | |
g(x) |
<infty