Table of Clebsch–Gordan coefficients explained
This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant
,
,
is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and
Biedenharn.
[1] Tables with the same sign convention may be found in the
Particle Data Group's
Review of Particle Properties[2] and in online tables.
[3] Formulation
The Clebsch–Gordan coefficients are the solutions to
|j1,j2;J,M\rangle=
|j1,m1;j2,m2\rangle\langlej1,j2;m1,m2\midj1,j2;J,M\rangle
Explicitly:
\begin{align}
&\langlej1,j2;m1,m2\midj1,j2;J,M\rangle\\[6pt]
={}&
| (2J+1)(J+j1-j2)!(J-j1+j2)!(j1+j2-J)! |
(j1+j2+J+1)! |
}\ \times \\[6pt]&\sqrt\ \times \\[6pt]&\sum_k \frac.\end
The summation is extended over all integer for which the argument of every factorial is nonnegative.[4]
For brevity, solutions with and are omitted. They may be calculated using the simple relations
\langlej1,j2;m1,m2\midj1,j
\langlej1,j2;-m1,-m2\midj1,j2;J,-M\rangle.
and
\langlej1,j2;m1,m2\midj1,j
\langlej2,j1;m2,m1\midj2,j1;J,M\rangle.
Specific values
The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.[5]
When, the Clebsch–Gordan coefficients are given by
.
| 2 | 1 | 0 |
---|
1, −1 |
} |
} |
} |
---|
0, 0 |
} |
|
} |
---|
−1, 1 |
} |
} |
} | |
---|
| | | |
---|
, −1 |
} |
} |
} |
---|
, 0 |
} |
} |
} |
---|
−, 1 |
} |
} |
} | |
---|
| 3 | 2 | 1 |
---|
, − |
} |
} |
} |
---|
, |
} |
|
} |
---|
−, |
} |
} |
} | |
---|
| 3 | 2 | 1 | 0 |
---|
, − |
} |
|
} |
|
---|
, − |
} |
|
} |
|
---|
−, |
} |
|
} |
|
---|
−, |
} |
|
} |
| |
---|
| 3 | 2 | 1 |
---|
2, −1 |
} |
} |
} |
---|
1, 0 |
} |
} |
} |
---|
0, 1 |
} |
} |
} | |
---|
| 3 | 2 | 1 |
---|
1, −1 |
} |
} |
} |
---|
0, 0 |
} |
|
} |
---|
−1, 1 |
} |
} |
} | |
---|
| | | |
---|
2, − |
} |
} |
} |
---|
1, |
} |
} |
} |
---|
0, |
} |
} |
} | |
---|
| | | | |
---|
2, − |
} |
} |
} |
} |
---|
1, − |
} |
} |
|
} |
---|
0, |
} |
} |
} |
} |
---|
−1, |
} |
} |
} |
} | |
---|
| 4 | 3 | 2 |
---|
2, 0 |
} |
} |
} |
---|
1, 1 |
} |
|
} |
---|
0, 2 |
} |
} |
} | |
---|
| 4 | 3 | 2 | 1 |
---|
2, −1 |
} |
} |
} |
} |
---|
1, 0 |
} |
} |
} |
} |
---|
0, 1 |
} |
} |
} |
} |
---|
−1, 2 |
} |
} |
} |
} | |
---|
| 4 | 3 | 2 | 1 | 0 |
---|
2, −2 |
} |
} |
} |
} |
} |
---|
1, −1 |
} |
} |
} |
} |
} |
---|
0, 0 |
} |
|
} |
|
} |
---|
−1, 1 |
} |
} |
} |
} |
} |
---|
−2, 2 |
} |
} |
} |
} |
} | |
---|
| | | |
---|
, −1 |
} |
} |
} |
---|
, 0 |
} |
} |
} |
---|
, 1 |
} |
} |
} | |
---|
| | | |
---|
, −1 |
} |
} |
} |
---|
, 0 |
} |
} |
} |
---|
−, 1 |
} |
} |
} | |
---|
| 4 | 3 | 2 |
---|
, − |
} |
} |
} |
---|
, |
} |
} |
} |
---|
, |
} |
} |
} | |
---|
| 4 | 3 | 2 | 1 |
---|
, − |
} |
} |
} |
} |
---|
, − |
} |
} |
} |
} |
---|
, |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} | |
---|
| 4 | 3 | 2 | 1 |
---|
, − |
} |
} |
} |
} |
---|
, − |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} | |
---|
| | | |
---|
, 0 |
} |
} |
} |
---|
, 1 |
} |
} |
} |
---|
, 2 |
} |
} |
} | |
---|
| | | | |
---|
, −1 |
} |
} |
} |
} |
---|
, 0 |
} |
} |
} |
} |
---|
, 1 |
} |
} |
} |
} |
---|
−, 2 |
} |
} |
} |
} | |
---|
| | | | | |
---|
, −2 |
} |
} |
} |
} |
} |
---|
, −1 |
} |
} |
} |
} |
} |
---|
, 0 |
} |
} |
} |
} |
} |
---|
−, 1 |
} |
} |
|
} |
} |
---|
−, 2 |
} |
} |
} |
} |
} | |
---|
| 5 | 4 | 3 | 2 |
---|
, − |
} |
} |
} |
} |
---|
, |
} |
} |
} |
} |
---|
, |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} | |
---|
| 5 | 4 | 3 | 2 | 1 |
---|
, − |
} |
} |
} |
} |
} |
---|
, − |
} |
} |
} |
} |
} |
---|
, |
} |
|
} |
|
} |
---|
−, |
} |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} |
} | |
---|
| 5 | 4 | 3 | 2 | 1 | 0 |
---|
, − |
} |
} |
} |
} |
} |
} |
---|
, − |
} |
} |
} |
} |
} |
} |
---|
, − |
} |
} |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} |
} |
} |
---|
−, |
} |
} |
} |
} |
} |
} | |
---|
SU(N) Clebsch–Gordan coefficients
Algorithms to produce Clebsch–Gordan coefficients for higher values of
and
, or for the su(N) algebra instead of su(2), are known.
[6] A
web interface for tabulating SU(N) Clebsch–Gordan coefficients is readily available.
References
- Baird . C.E. . L. C. Biedenharn . On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn . J. Math. Phys. . 5 . 12 . October 1964 . 1723–1730 . 10.1063/1.1704095 . 1964JMP.....5.1723B.
- Hagiwara . K. . Review of Particle Properties . Phys. Rev. D . 66 . 1 . July 2002 . 010001 . 10.1103/PhysRevD.66.010001 . 2007-12-20 . 2002PhRvD..66a0001H. etal.
- Web site: Mathar . Richard J. . SO(3) Clebsch Gordan coefficients . 2006-08-14 . text . 2012-10-15.
- (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, .
- Book: Weissbluth, Mitchel . Atoms and molecules . registration . 1978 . ACADEMIC PRESS . 0-12-744450-5 . 28. Table 1.4 resumes the most common.
- Alex . A. . M. Kalus . A. Huckleberry . J. von Delft . A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch–Gordan coefficients . J. Math. Phys. . 82 . February 2011 . 023507 . 10.1063/1.3521562 . 2011JMP....52b3507A . 1009.0437 .
External links