TMUB2 explained
Transmembrane and ubiquitin-like domain-containing protein 2 is a protein that in humans is encoded by the TMUB2 gene.[1] [2] [3]
Gene
TMUB2 maps on the human chromosome 17, at locus 17q21.31.[3] TMUB2 sits between two neighboring genes, ASB16-AS1 to the left and ATXN7L3 to the right.[4] TMUB2 is 4.99Kb long. The TMUB2 gene can be transcribed into three possible mRNA variants.[5]
Expression
TMUB2 is likely ubiquitously expressed throughout the human body.[6] It has a high expression level that is 2.9 times higher than other human genes.[7] [8]
Protein
The TMUB2 protein has a function that is not currently known. It consists of a 321 amino acid long chain in humans. The human protein has a molecular weight of 33.8kdal, an isoelectric point of 4.73899, and three transmembrane regions.[9] These will likely vary in orthologs.
Homology
Paralogs
TMUB1 is the only paralog of TMUB2.[10] [11] These proteins share a 38% identity and 51% similarity.
Orthologs
The table below presents a selection of some of the TMUB2 orthologs to display protein diversity among species.[12]
Species | Common name | Accession number | Sequence length (aa) | Sequence identity | Sequence similarity |
---|
| Chimpanzee | XP_003953053.1 | 301 | 100% | 100% |
| Cat | XP_003997025.1 | 322 | 95% | 95% |
| Mouse | AAH29841.2 | 319 | 85% | 88% |
| Alligator | XP_006271613.1 | 306 | 61% | 71% |
| Bald Eagle | XP_010559728 | 301 | 59% | 70% |
| Zebrafish | NP_001005573.1 | 291 | 47% | 60% |
| Ant | XP_011049429.1 | 354 | 23% | 42% |
Nannochloropsis Gaditana | Algae | EWM26843.1 | 476 | 41% | 54% |
Coccidioides immitis RS | Pathogenic Fungus | XP_001242306.1 | 418 | 38% | 50% | |
Protein Interactions
In humans, Ubiquitin C (UBC) is a protein with a known interaction with TMUB2.[13] [14] [15] [16] Other proposed interactions include BCL2L13 (BCL2-like 13),[17] SGTA (Small glutamine-rich tetratricopeptide repeat-containing protein),[17] and UBQLN1 (Ubiquilin-1).[17] [18] [19]
Further reading
- Hartley JL, Temple GF, Brasch MA . DNA cloning using in vitro site-specific recombination . Genome Res. . 10 . 11 . 1788–1795 . 2001 . 11076863 . 10.1101/gr.143000 . 310948 .
- Wiemann S . Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs . Genome Res. . 11 . 3 . 422–435 . 2001 . 11230166 . 10.1101/gr.GR1547R . 311072 . vanc. Weil B . Wellenreuther R . 3 . Gassenhuber . J . Glassl . S . Ansorge . W . Böcher . M . Blöcker . H . Bauersachs . S .
- Strausberg RL . Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences . Proc. Natl. Acad. Sci. U.S.A. . 99 . 26 . 16899–16903 . 2003 . 12477932 . 10.1073/pnas.242603899 . 139241 . vanc. Feingold EA . Grouse LH . 3 . Derge . JG . Klausner . RD . Collins . FS . Wagner . L . Shenmen . CM . Schuler . GD . 2002PNAS...9916899M . free .
- Clark HF . The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment . Genome Res. . 13 . 10 . 2265–2270 . 2003 . 12975309 . 10.1101/gr.1293003 . 403697 . vanc. Gurney AL . Abaya E . 3 . Baker . K . Baldwin . D . Brush . J . Chen . J . Chow . B . Chui . C .
- Ota T . Complete sequencing and characterization of 21,243 full-length human cDNAs . Nat. Genet. . 36 . 1 . 40–45 . 2004 . 14702039 . 10.1038/ng1285 . vanc. Suzuki Y . Nishikawa T . 3 . Otsuki . Tetsuji . Sugiyama . Tomoyasu . Irie . Ryotaro . Wakamatsu . Ai . Hayashi . Koji . Sato . Hiroyuki . free .
- Gerhard DS . The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) . Genome Res. . 14 . 10B . 2121–2127 . 2004 . 15489334 . 10.1101/gr.2596504 . 528928 . vanc. Wagner L . Feingold EA . 3 . Shenmen . CM . Grouse . LH . Schuler . G . Klein . SL . Old . S . Rasooly . R .
- Wiemann S . From ORFeome to biology: a functional genomics pipeline . Genome Res. . 14 . 10B . 2136–2144 . 2004 . 15489336 . 10.1101/gr.2576704 . 528930 . vanc. Arlt D . Huber W . 3 . Wellenreuther . R . Schleeger . S . Mehrle . A . Bechtel . S . Sauermann . M . Korf . U .
- Wan D . Large-scale cDNA transfection screening for genes related to cancer development and progression . Proc. Natl. Acad. Sci. U.S.A. . 101 . 44 . 15724–15729 . 2004 . 15498874 . 10.1073/pnas.0404089101 . 524842 . vanc. Gong Y . Qin W . 3 . Zhang . P . Li . J . Wei . L . Zhou . X . Li . H . Qiu . X . 2004PNAS..10115724W . free .
- Mehrle A . The LIFEdb database in 2006 . Nucleic Acids Res. . 34 . Database issue . D415–D418 . 2006 . 16381901 . 10.1093/nar/gkj139 . 1347501 . vanc. Rosenfelder H . Schupp I . 3 . Del Val . C . Arlt . D . Hahne . F . Bechtel . S . Simpson . J . Hofmann . O .
Notes and References
- Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA . A "double adaptor" method for improved shotgun library construction . Anal Biochem . 236 . 1 . 107–113 . June 1996 . 8619474 . 10.1006/abio.1996.0138 .
- Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA . Large-scale concatenation cDNA sequencing . Genome Res . 7 . 4 . 353–8 . June 1997 . 9110174 . 139146 . 10.1101/gr.7.4.353.
- Web site: Entrez Gene: TMUB2 transmembrane and ubiquitin-like domain containing 2.
- https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr17%3A42259020-42275597&hgsid=426041715_ANNefi64afxuGVINquJ7rpTa6bqE UCSC Genome Browser: BLAT Search
- https://www.ncbi.nlm.nih.gov/gene/79089 NCBI Gene: TMUB2
- https://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Hs.181391 EST Profile Viewer: Human
- https://www.ncbi.nlm.nih.gov/ieb/research/acembly/av.cgi?db=human&term=TMUB2&submit=Go Aceview: TMUB2
- https://www.ncbi.nlm.nih.gov/geo/tools/profileGraph.cgi?ID=GDS596:218419_s_at NCBI GEO Profiles
- http://workbench.sdsc.edu/ SDSC Biology Workbench 2.0
- https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMUB2&search=5705db1fe27bd6e1da46a810e7cd5bb2 GeneCards: TMUB2
- https://www.ncbi.nlm.nih.gov/gene/83590 NCBI Gene: TMUB1
- http://blast.ncbi.nlm.nih.gov/Blast.cgi NCBI BLAST: Basic Local Alignment Search Tool
- Danielsen Jannie M R . Sylvestersen Kathrine B . Bekker-Jensen Simon . Szklarczyk Damian . Poulsen Jon W . Horn Heiko . Jensen Lars J . Mailand Niels . Nielsen Michael L . 2011 . Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level . Molecular & Cellular Proteomics . 10 . 3. M110.003590 . 10.1074/mcp.M110.003590 . free . 21139048 . 3047152.
- Wagner S. A. . Beli P. . Weinert B. T. . Nielsen M. L. . Cox J. . Mann M. . Choudhary C. . 2011 . A Proteome-Wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles . Molecular & Cellular Proteomics . 10. 10. M111.013284. 10.1074/mcp.M111.013284 . free . 21890473 . 3205876.
- Kim Woong . Bennett Eric J. . Huttlin Edward L. . Guo Ailan . Li Jing . Possemato Anthony . Sowa Mathew E. . 2011 . Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome . Molecular Cell . 44 . 2. 325–40 . 10.1016/j.molcel.2011.08.025 . etal . 21906983 . 3200427.
- Povlsen Lou K. . Beli Petra . Wagner Sebastian A. . Poulsen Sara L. . Sylvestersen Kathrine B. . Poulsen Jon W. . Nielsen Michael L. . Bekker-Jensen Simon . Mailand Niels . Choudhary Chunaram . 2012 . Systems-Wide Analysis of Ubiquitylation Dynamics Reveals a Key Role for PAF15 Ubiquitylation in DNA-Damage Bypass . Nature Cell Biology . 14. 10. 1089–1098. 10.1038/ncb2579 . 23000965. 26442522 .
- Rolland T, Taşan M, Charloteaux B . November 2014 . A proteome-scale map of the human interactome network . Cell . 159 . 5. 1212–26 . 10.1016/j.cell.2014.10.050 . 25416956 . 4266588. etal.
- http://string-db.org/newstring_cgi/show_set_evidence.pl?data_channel=experimental&taskId=iDehS53SHBix&node2=1852861 STRING: Functional Protein Association Networks
- http://thebiogrid.org/122537/table/homo-sapiens/tmub2.html BioGRID Database