Transmembrane protein 89 explained

Transmembrane protein 89 (TMEM89) is a protein that in humans is encoded by the TMEM89 gene.

Gene

Structure

The TMEM89 gene is found on the minus strand of chromosome 3 (3p21.31) from 48,658,192 to 48,659,288 and is 1,011 nucleotides long.[1] [2] The gene has two exons.[1] [2] These two exons are not predicted to be alternatively spliced.[1] [2]

Gene expression

The TMEM89 gene is most highly expressed in the testis.[1] [2] TMEM89 is also found to be expressed at low levels in other tissues such as the stomach, kidneys, heart, ovaries, thyroid, colon, bone marrow, and in adrenal tissues.[1] This gene is also expressed in fetal heart, stomach, kidney, and intestine tissues. Immunohistochemistry data has also found TMEM89 located in the cell membranes of the colon, fallopian tube, kidney, and testis tissues.[3] [4] Expression of the TMEM89 gene has also been found in low amounts in the brain tissue from a mouse cerebellum.[5]

Gene expression neighborhood

Human TMEM89 is a part of the Human Protein Atlas expression cluster 23: SpermatidS - Flagellum & Golgi organization.[6] The 15 closest expression neighbors include OR4M1, ANTXRL, TGIF2LX, CPXCR1, C3orf84, CXorf66, CLDN17, C11orf94, USP50, SPDYE4, MMP20, SSMEM1, SPMAP1, SPACA1, and LYZL1.[6]

Differential gene expression

TMEM89 expression is much higher in amniotic fluid derived hAKPC-P cells compared with immortalized hIPod line cells.[7] TMEM89 expression is higher in cells that have macrophage migration inhibitory factor (MIF) knocked down compared to the control.[8] TMEM89 expression is the lowest in cardiomyocytes from human embryonic stem cells, compared to expression in human embryonic stem cells, embryoid bodies with beating cardiomyocytes, and cardiomyocytes from fetal hearts.[9]

Clinical significance

Gene expression of TMEM89 was found to be upregulated in upper tract urothelial carcinomas, and therefore predicted as a possible biomarker secretory protein for these types of carcinomas.[10] The TMEM89 gene was found to be a potential modifier of autism spectrum disorder severity in a SNP analysis. Gene expression of TMEM89 was also used in a model that predicted the risk score for a potential relapse in stage 1 testicular germ cell tumors.[11]

Protein

Structure

Primary

The human TMEM89 protein is 159 amino acids long. This protein has a molecular mass of ~17.5kDa and an isoelectric point of ~10 pI.[2] [12] Proteins with a more basic pI are usually associated with the mitochondria or the plasma membrane and have fewer protein interactions.[13] [14] The protein structure contains two topological domains (extracellular and cytoplasmic) and a helical transmembrane domain.[15] The human TMEM89 protein is rich in the amino acids histidine, leucine, and tryptophan.[16] The amino acids aspartate, asparagine, and phenylalanine are present in low amounts in the human TMEM89 protein. Amino acid patterns such as ED are present in the human TMEM89 protein at low amounts, while the pattern KR-ED is present in high amounts. Within the extracellular domain of the human TMEM89 protein, there are 3 cysteines with regular spacing. In the cytoplasmic domain, there are two positive amino acid runs from amino acids 3-5 and 25-27. These different amino acid patterns and protein domains can be visualized in the figures to the right.

Secondary

The TMEM89 protein is only made up of α-helices and strands.[17] The α-helices are distributed all throughout the protein in all three domains.

Tertiary

The tertiary structure of Human TMEM89 was predicted using Alphafold and I-Tasser software. These structures can be seen on the right.

Post-translational modifications

The TMEM89 protein has a predicted N-myristylation site from amino acids 47-52, a predicted Src homology 3 (SH3) binding domain from amino acids 106-111, and one conserved predicted phosphorylation site at amino acid S117.[18] [19] [20] N-myristylation is a protein lipid modification that has roles in protein-protein interactions, cell signaling, and targeting proteins to endomembranes and the plasma membrane.[21] Proteins with SH3 binding domains are usually involved in signal transduction pathways, cytoskeleton organization, membrane trafficking, or organelle assembly.[22] Protein phosphorylation is an important process involved with signal transduction, protein synthesis, cell division, cell growth, development, and aging.[23]

Interactions

The human TMEM89 protein interacts with the proteins C4A, RBM15B, GOLGA6A, PFKFB4, DOCK3, MAPKAPK3, ZNF557, and ZBTB47.[24] [25]

Homologs

Orthologs

Orthologs of TMEM89 are only found in mammals.[1] The only mammalian taxon that does not contain a TMEM89 ortholog is the monotremes.

Below is a table with information on some of the orthologs of human TMEM89. These orthologs were used to make the multiple sequence alignment and N-myristylation site alignment to the right.

TMEM89 Ortholog Table[26] [27] !Genus and Species!Common Name!Taxon!Date of Divergence (MYA)!NCBI Accession Number!Sequence Length (aa)!% Identity!% Similarity
Homo sapiensHumansPrimate0NP_001008270.1 159100100
Castor canadensisAmerican beaverRodentia87XP_020018275.115873.181.2
Urocitellus parryiiArctic ground squirrelRodentia87XP_026239733.1 15566.074.8
Orcinus orcaOrcaArtiodactyla94XP_004283952.115971.980.0
Bos taurusCowArtiodactyla94NP_001104538.1 15963.573.5
Odobenus rosmarus divergensPacific walrusCarnivora94XP_004399365.215967.977.4
Canis lupus familiarisDogCarnivora94XP_038283783.115965.676.2
Talpa occidentalisSpanish moleEulipotphyla94XP_037376292.116266.775.3
Condylura cristataStar-nosed moleEulipotphyla94XP_004676653.116263.074.1
Pteropus alectoBlack flying foxChiroptera94XP_006909233.115665.274.5
Desmodus rotundusCommon vampire batChiroptera94XP_024421609.115963.874.4
Ceratotherium simum simumSouthern white rhinocerosPerissodactyla94XP_004419716.115964.278.0
Equus caballusHorsePerissodactyla94XP_003363167.220749.858.9
Manis javanicaMalayan pangolinPholidota94KAI5937412.115853.867.5
Manis pentadactylaChinese pangolinPholidota94XP_036733472.115853.166.0
Orycteropus afer aferAardvarkTubulidentata99XP_007953489.116068.977.0
Loxodonta africanaAfrican bush elephantProboscidea99XP_003409726.116068.879.4
Dasypus novemcinctusNine-banded armadilloCingulata99XP_004451990.115767.575.0
Sarcophilus harrisiiTasmanian devilDasyuromorphia160XP_031794457.116841.052.2
Trichosurus vulpeculaCommon brushtail possumDiprotodontia160XP_036595517.116840.851.4

Conserved regions

Regions within the cytoplasmic and extracellular domains of the human TMEM89 protein seem to be the most conserved, as seen in figures on the right. Some of these conserved amino acids are part of α-helices in the cytoplasmic and extracellular regions.

Notes and References

  1. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST . 6 . Database resources of the national center for biotechnology information . Nucleic Acids Research . 50 . D1 . D20–D26 . January 2022 . 34850941 . 8728269 . 10.1093/nar/gkab1112 .
  2. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D . 6 . The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses . Current Protocols in Bioinformatics . 54 . 1 . 1.30.1–1.30.33 . June 2016 . 27322403 . 10.1002/cpbi.5 . 26619932 .
  3. Web site: The Human Protein Atlas . 2022-12-15 . www.proteinatlas.org.
  4. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F . 6 . Proteomics. Tissue-based map of the human proteome . Science . 347 . 6220 . 1260419 . January 2015 . 25613900 . 10.1126/science.1260419 . 802377 .
  5. Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, Takeno MM, Huang L, Gu H, Larsen R, Mills M, Bosma-Moody A, Siverts LA, Walker M, Graybuck LT, Yao Z, Fong O, Nguyen TN, Garren E, Lenz GH, Chavarha M, Pendergraft J, Harrington J, Hirokawa KE, Harris JA, Nicovich PR, McGraw MJ, Ollerenshaw DR, Smith KA, Baker CA, Ting JT, Sunkin SM, Lecoq J, Lin MZ, Boyden ES, Murphy GJ, da Costa NM, Waters J, Li L, Tasic B, Zeng H . 6 . A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality . Cell . 174 . 2 . 465–480.e22 . July 2018 . 30007418 . 6086366 . 10.1016/j.cell.2018.06.035 .
  6. Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, Sjöstedt E, Butler L, Odeberg J, Dusart P, Edfors F, Oksvold P, von Feilitzen K, Zwahlen M, Arif M, Altay O, Li X, Ozcan M, Mardinoglu A, Fagerberg L, Mulder J, Luo Y, Ponten F, Uhlén M, Lindskog C . 6 . A single-cell type transcriptomics map of human tissues . Science Advances . 7 . 31 . eabh2169 . July 2021 . 34321199 . 8318366 . 10.1126/sciadv.abh2169 . 2021SciA....7.2169K .
  7. Da Sacco S, Lemley KV, Sedrakyan S, Zanusso I, Petrosyan A, Peti-Peterdi J, Burford J, De Filippo RE, Perin L . 6 . A novel source of cultured podocytes . PLOS ONE . 8 . 12 . e81812 . 12 December 2013 . 24349133 . 3861313 . 10.1371/journal.pone.0081812 . free . 2013PLoSO...881812D .
  8. Liu L, Ji C, Chen J, Li Y, Fu X, Xie Y, Gu S, Mao Y . 6 . A global genomic view of MIF knockdown-mediated cell cycle arrest . Cell Cycle . 7 . 11 . 1678–1692 . June 2008 . 18469521 . 10.4161/cc.7.11.6011 . 28241410 . free .
  9. Cao F, Wagner RA, Wilson KD, Xie X, Fu JD, Drukker M, Lee A, Li RA, Gambhir SS, Weissman IL, Robbins RC, Wu JC . 6 . Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes . PLOS ONE . 3 . 10 . e3474 . 22 October 2008 . 18941512 . 2565131 . 10.1371/journal.pone.0003474 . free . 2008PLoSO...3.3474C .
  10. Li Y, He S, He A, Guan B, Ge G, Zhan Y, Wu Y, Gong Y, Peng D, Bao Z, Li X, Zhou L . 6 . Identification of plasma secreted phosphoprotein 1 as a novel biomarker for upper tract urothelial carcinomas . Biomedicine & Pharmacotherapy . 113 . 108744 . May 2019 . 30844659 . 10.1016/j.biopha.2019.108744 . 73493678 . free .
  11. Zhou JG, Yang J, Jin SH, Xiao S, Shi L, Zhang TY, Ma H, Gaipl US . 6 . Development and Validation of a Gene Signature for Prediction of Relapse in Stage I Testicular Germ Cell Tumors . Frontiers in Oncology . 10 . 1147 . 30 July 2020 . 32850325 . 7412879 . 10.3389/fonc.2020.01147 . free .
  12. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D . 6 . The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences . Electrophoresis . 14 . 10 . 1023–1031 . October 1993 . 8125050 . 10.1002/elps.11501401163 . 38041111 .
  13. Baskin EM, Bukshpan S, Zilberstein GV . pH-induced intracellular protein transport . Physical Biology . 3 . 2 . 101–106 . May 2006 . 16829696 . 10.1088/1478-3975/3/2/002 . 41599078 . 2006PhBio...3..101B .
  14. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek MR, Cebrat S . 6 . The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms . BMC Genomics . 8 . 1 . 163 . June 2007 . 17565672 . 1905920 . 10.1186/1471-2164-8-163 . free .
  15. Bateman A, Martin M, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, Bye-a-Jee H, Coetzee R, Cukura A, Da Silva A, Denny P, Dogan T, Ebenezer T, Fan J, Castro LG, Garmiri P, Georghiou G, Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen P, Joshi V, Jyothi D . 6 . UniProt Consortium . UniProt: the universal protein knowledgebase in 2021 . Nucleic Acids Research . 49 . D1 . D480–D489 . January 2021 . 33237286 . 7778908 . 10.1093/nar/gkaa1100 .
  16. Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S . Methods and algorithms for statistical analysis of protein sequences . Proceedings of the National Academy of Sciences of the United States of America . 89 . 6 . 2002–2006 . March 1992 . 1549558 . 48584 . 10.1073/pnas.89.6.2002 . free . 1992PNAS...89.2002B .
  17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D . 6 . Highly accurate protein structure prediction with AlphaFold . Nature . 596 . 7873 . 583–589 . August 2021 . 34265844 . 8371605 . 10.1038/s41586-021-03819-2 . 2021Natur.596..583J .
  18. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L . 6 . MyHits: improvements to an interactive resource for analyzing protein sequences . Nucleic Acids Research . 35 . Web Server issue . W433–W437 . July 2007 . 17545200 . 1933190 . 10.1093/nar/gkm352 .
  19. Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano-Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey NE, Pancsa R, Chemes LB, Gibson TJ . 6 . The Eukaryotic Linear Motif resource: 2022 release . Nucleic Acids Research . 50 . D1 . D497–D508 . January 2022 . 34718738 . 8728146 . 10.1093/nar/gkab975 .
  20. Web site: Kinexus PhosphoNET . www.phosphonet.ca.
  21. Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A . Myristoylation: An Important Protein Modification in the Immune Response . Frontiers in Immunology . 8 . 751 . 2017-06-30 . 28713376 . 5492501 . 10.3389/fimmu.2017.00751 . free .
  22. Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano-Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey NE, Pancsa R, Chemes LB, Gibson TJ . 6 . The Eukaryotic Linear Motif resource: 2022 release . Nucleic Acids Research . 50 . D1 . D497–D508 . January 2022 . 34718738 . 8728146 . 10.1093/nar/gkab975 .
  23. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L . The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review) . International Journal of Molecular Medicine . 40 . 2 . 271–280 . August 2017 . 28656226 . 5500920 . 10.3892/ijmm.2017.3036 .
  24. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wühr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP . 6 . The BioPlex Network: A Systematic Exploration of the Human Interactome . Cell . 162 . 2 . 425–440 . July 2015 . 26186194 . 4617211 . 10.1016/j.cell.2015.06.043 .
  25. Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, Naj A, Rajbhandary R, Wang LS, Valladares O, Lin CF, Larson EB, Graff-Radford NR, Evans D, De Jager PL, Crane PK, Buxbaum JD, Murrell JR, Raj T, Ertekin-Taner N, Logue M, Baldwin CT, Green RC, Barnes LL, Cantwell LB, Fallin MD, Go RC, Griffith PA, Obisesan TO, Manly JJ, Lunetta KL, Kamboh MI, Lopez OL, Bennett DA, Hendrie H, Hall KS, Goate AM, Byrd GS, Kukull WA, Foroud TM, Haines JL, Farrer LA, Pericak-Vance MA, Lee JH, Schellenberg GD, St George-Hyslop P, Mayeux R, Rogaeva E . 6 . Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals . JAMA Neurology . 72 . 11 . 1313–1323 . November 2015 . 26366463 . 4641052 . 10.1001/jamaneurol.2015.1700 .
  26. Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges SB . 6 . TimeTree 5: An Expanded Resource for Species Divergence Times . Molecular Biology and Evolution . 39 . 8 . msac174 . August 2022 . 35932227 . 9400175 . 10.1093/molbev/msac174 .
  27. Needleman SB, Wunsch CD . A general method applicable to the search for similarities in the amino acid sequence of two proteins . Journal of Molecular Biology . 48 . 3 . 443–453 . March 1970 . 5420325 . 10.1016/0022-2836(70)90057-4 .