Szegő limit theorems explained

In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1] [2] They were first proved by Gábor Szegő.

Notation

Let

w

be a Fourier series with Fourier coefficients

ck

, relating to each other as

w(\theta)=

infty
\sum
k=-infty

ckei,    \theta\in[0,2\pi],

ck=

1
2\pi
2\pi
\int
0

w(\theta)e-ik\thetad\theta,

such that the

n x n

Toeplitz matrices

Tn(w)=\left(ck-l\right)0\leq

are Hermitian, i.e., if

Tn(w)=T

\ast
n(w)
then

c-k=\overline{ck}

. Then both

w

and eigenvalues
(n)
(λ
m

)0\leq

are real-valued and the determinant of

Tn(w)

is given by

\detTn(w)=

n-1
\prod
m=1
(n)
λ
m
.

Szegő theorem

Under suitable assumptions the Szegő theorem states that

\limn

1
n
n-1
\sum
m=0
(n)
F(λ
m

)=

1
2\pi
2\pi
\int
0

F(w(\theta))d\theta

for any function

F

that is continuous on the range of

w

. In particular

such that the arithmetic mean of

λ(n)

converges to the integral of

w

.[3]

First Szegő theorem

The first Szegő theorem[1] [2] [4] states that, if right-hand side of holds and

w\geq0

, then

holds for

w>0

and

w\inL1

. The RHS of is the geometric mean of

w

(well-defined by the arithmetic-geometric mean inequality).

Second Szegő theorem

Let

\widehatck

be the Fourier coefficient of

logw\inL1

, written as

\widehatck=

1
2\pi
2\pi
\int
0

log(w(\theta))e-ik\thetad\theta

The second (or strong) Szegő theorem[1] [5] states that, if

w\geq0

, then

\limn

\detTn(w)
(n+1)\widehatc0
e

=\exp\left(

infty
\sum
k=1

k\left|\widehat

2
c
k\right|

\right).

See also

Notes and References

  1. Book: 1071374. Böttcher. Albrecht. Silbermann. Bernd. Analysis of Toeplitz operators. Springer-Verlag. Berlin. 1990. 3-540-52147-X. Toeplitz determinants. 525.
  2. Book: Simon. Barry. Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton University Press. Princeton. 2011. 978-0-691-14704-8.
  3. Robert M.. Gray. Toeplitz and Circulant Matrices: A Review. Foundations and Trends in Signal Processing. 2006.
  4. G.. Szegő. Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann.. 76. 1915. 490 - 503. 10.1007/BF01458220. 4. 123034653 .
  5. 0051961. Szegő. G.. On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]. 1952. 228 - 238.