Szász–Mirakyan operator explained
In functional analysis, a discipline within mathematics, the Szász–Mirakyan operators (also spelled "Mirakjan" and "Mirakian") are generalizations of Bernstein polynomials to infinite intervals, introduced by Otto Szász in 1950 and G. M. Mirakjan in 1941. They are defined by
\left[l{S}n(f)\right](x):=e-nx
f\left(\tfrac{k}{n}\right)}
where
and
.
[1] [2] Basic results
In 1964, Cheney and Sharma showed that if
is convex and non-linear, the sequence
decreases with
(
).
[3] They also showed that if
is a polynomial of degree
, then so is
for all
.
A converse of the first property was shown by Horová in 1968 (Altomare & Campiti 1994:350).
Theorem on convergence
In Szász's original paper, he proved the following as Theorem 3 of his paper:
If
is
continuous on
, having a finite limit at infinity, then
converges uniformly to
as
.
[1] This is analogous to a theorem stating that Bernstein polynomials approximate continuous functions on [0,1].
Generalizations
A Kantorovich-type generalization is sometimes discussed in the literature. These generalizations are also called the Szász–Mirakjan–Kantorovich operators.
In 1976, C. P. May showed that the Baskakov operators can reduce to the Szász–Mirakyan operators.[4]
References
- Book: Altomare, Francesco. Michele Campiti . 1994. Korovkin-Type Approximation Theory and Its Applications. Walter de Gruyter. 3-11-014178-7.
- Favard . Jean . Jean Favard . 1944 . Sur les multiplicateurs d'interpolation . French . Journal de Mathématiques Pures et Appliquées . 23 . 9 . 219–247. (See also: Favard operators)
- Horová. Ivana. 1968. Linear positive operators of convex functions. Mathematica (Cluj). 10. 33. 275–283. 0186.11101.
- Kac . Mark . Mark Kac . 1938 . Une remarque sur les polynomes de M. S. Bernstein . French . Studia Mathematica . 7 . 49–51 . 10.4064/sm-7-1-49-51 . 0018.20704 .
- Kac . M. . Mark Kac . 1939 . Reconnaissance de priorité relative à ma note 'Une remarque sur les polynomes de M. S. Bernstein' . French . Studia Mathematica . 8 . 170 . 65.0248.03 .
- Mirakjan . G. M. . 1941 . Approximation of continuous functions with the aid of polynomials of the form
. Approximation des fonctions continues au moyen de polynômes de la forme
. French . . 31 . 201–205 . 67.0216.03.
- Wood. B.. July 1969. Generalized Szasz operators for the approximation in the complex domain. SIAM Journal on Applied Mathematics. 17. 790–801. 0182.08801. 4. 10.1137/0117071. 2099320.
Footnotes
- Szász . Otto . 1950 . Generalizations of S. Bernstein's polynomials to the infinite interval . Journal of Research of the National Bureau of Standards . 45 . 3 . 239–245 . 10.6028/jres.045.024. free .
- Walczak . Zbigniew . 2003 . On modified Szasz–Mirakyan operators . Novi Sad Journal of Mathematics . 33 . 1 . 93–107 .
- Cheney. Edward W.. A. Sharma . 1964. Bernstein power series. Canadian Journal of Mathematics. 16. 2. 241–252. 10.4153/cjm-1964-023-1 . free.
- May. C. P.. 1976. Saturation and inverse theorems for combinations of a class of exponential-type operators. Canadian Journal of Mathematics. 28. 6. 1224–1250. 10.4153/cjm-1976-123-8. free.