Szász–Mirakjan–Kantorovich operator explained

In functional analysis, a discipline within mathematics, the Szász–Mirakjan–Kantorovich operators are defined by

-nx
[l{T}
n(f)](x)=ne
infty{(nx)k
k!
\sum
k=0
(k+1)/n
\int
k/n

f(t)dt}

where

x\in[0,infty)\subsetR

and

n\inN

.[1]

See also

Notes

  1. Walczak. Zbigniew. 2002. On approximation by modified Szasz–Mirakyan operators. Glasnik Matematički. 37. 57. 303–319.

References