Synergetics (Haken) Explained

Synergetics is an interdisciplinary science explaining the formation and self-organization of patterns and structures in open systems far from thermodynamic equilibrium. It is founded by Hermann Haken, inspired by the laser theory. Haken's interpretation of the laser principles as self-organization of non-equilibrium systems paved the way at the end of the 1960s to the development of synergetics. One of his successful popular books is Erfolgsgeheimnisse der Natur, translated into English as The Science of Structure: Synergetics.[1]

Self-organization requires a 'macroscopic' system, consisting of many nonlinearly interacting subsystems. Depending on the external control parameters (environment, energy fluxes) self-organization takes place.

Order-parameter concept

Essential in synergetics is the order-parameter concept which was originally introduced in the Ginzburg–Landau theory in order to describe phase transitions in thermodynamics. The order parameter concept is generalized by Haken to the "enslaving-principle" saying that the dynamics of fast-relaxing (stable) modes is completely determined by the 'slow' dynamics of, as a rule, only a few 'order-parameters' (unstable modes). The order parameters can be interpreted as the amplitudes of the unstable modes determining the macroscopic pattern.

As a consequence, self-organization means an enormous reduction of degrees of freedom (entropy) of the system which macroscopically reveals an increase of 'order' (pattern-formation). This far-reaching macroscopic order is independent of the details of the microscopic interactions of the subsystems. This supposedly explains the self-organization of patterns in so many different systems in physics, chemistry and biology.

See also

References

External links

Notes and References

  1. Book: Haken . H. . The science of structure : synergetics . 1984 . Van Nostrand Reinhold . New York . 0442237030. 9644102.