Synchronous Data Flow Explained

Synchronous Data Flow (SDF) is a restriction on Kahn process networks where the number of tokens read and written by each process is known ahead of time. In some cases, processes can be scheduled such that channels have bounded FIFOs.[1]

Limitations

SDF does not account for asynchronous processes as their token read/write rates will vary. Practically, one can divide the network into synchronous sub-networks connected by asynchronous links. Alternatively a runtime supervisor can enforce fairness and other desired properties.

Applications

SDF is useful for modeling digital signal processing (DSP) routines. Models can be compiled to target parallel hardware like FPGAs, processors with DSP instruction sets like Qualcomm's Hexagon, and other systems.

See also

External links

Notes and References

  1. Lee. Edward Ashford. Messerschmitt. David G.. January 1987. Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing. IEEE Transactions on Computers. C-36. 1. 24–35. 10.1109/TC.1987.5009446. 9981963 . 0018-9340.