In mathematics, the symbolic method in invariant theory is an algorithm developed by Arthur Cayley, Siegfried Heinrich Aronhold, Alfred Clebsch, and Paul Gordan in the 19th century for computing invariants of algebraic forms. It is based on treating the form as if it were a power of a degree one form, which corresponds to embedding a symmetric power of a vector space into the symmetric elements of a tensor product of copies of it.
The symbolic method uses a compact, but rather confusing and mysterious notation for invariants, depending on the introduction of new symbols a, b, c, ... (from which the symbolic method gets its name) with apparently contradictory properties.
These symbols can be explained by the following example from Gordan. Suppose that
\displaystylef(x)=A0x
2+2A | |
1x |
1x2+A2x
2 | |
2 |
\displaystyle\Delta=A0A2-A
2. | |
1 |
\displaystyle2\Delta=(ab)2
\displaystyle(ab)=a1b2-a2b1.
\displaystyle
2-2a | |
(ab) | |
1a |
2b1b2+a
2. | |
1 |
\displaystylef(x)=(a1x1+a2x
2=(b | |
1x |
1+b2x
2 | |
2) |
\displaystyleAi=a
2-i | |
1 |
i | |
a | |
2 |
=
2-i | |
b | |
1 |
i | |
b | |
2 |
\displaystyle(ab)2=A2A0-2A1A1+A0A2=2\Delta.
More generally if
\displaystylef(x)=A0x
n+\binom{n}{1}A | |
1x |
n-1 | |
1 |
x2+ … +Anx
n | |
2 |
f(x)=(a1x1+a2x
n=(b | |
1x |
1+b2x
n=(c | |
1x |
1+c2x
n= … . | |
2) |
What this means is that the following two vector spaces are naturally isomorphic:
The isomorphism is given by mapping aa, bb, .... to Aj. This mapping does not preserve products of polynomials.
The extension to a form f in more than two variables x1, x2, x3,... is similar: one introduces symbols a1, a2, a3 and so on with the properties
f(x)=(a1x1+a2x2+a3x
n=(b | |
1x |
1+b2x2+b3x
n=(c | |
1x |
1+c2x2+c3x
n= … . | |
3+ … ) |
The rather mysterious formalism of the symbolic method corresponds to embedding a symmetric product Sn(V) of a vector space V into a tensor product of n copies of V, as the elements preserved by the action of the symmetric group. In fact this is done twice, because the invariants of degree n of a quantic of degree m are the invariant elements of SnSm(V), which gets embedded into a tensor product of mn copies of V, as the elements invariant under a wreath product of the two symmetric groups. The brackets of the symbolic method are really invariant linear forms on this tensor product, which give invariants of SnSm(V) by restriction.
Footnotes