In the mathematical subfield of numerical analysis the symbolic Cholesky decomposition is an algorithm used to determine the non-zero pattern for the
L
Let
A=(aij)\inKn
K
A=LLT
In order to implement an efficient sparse factorization it has been found to be necessary to determine the non zero structure of the factors before doing any numerical work. To write the algorithm down we use the following notation:
l{A}i
l{L}j
minl{L}j
l{L}j
\pi(i)
The following algorithm gives an efficient symbolic factorization of :
\begin{align} &\pi(i):=0~forall~i\\ &For~i:=1~to~n\\ & l{L}i:=l{A}i\\ & Forall~j~suchthat~\pi(j)=i\\ & l{L}i:=(l{L}i\cupl{L}j)\setminus\{j\}\\ & \pi(i):=min(l{L}i\setminus\{i\}) \end{align}