In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite.
Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:
{} \vdots
In other words, all of the leading principal minors must be positive. By using appropriate permutations of rows and columns of M, it can also be shown that the positivity of any nested sequence of n principal minors of M is equivalent to M being positive-definite.
An analogous theorem holds for characterizing positive-semidefinite Hermitian matrices, except that it is no longer sufficient to consider only the leading principal minors as illustrated by the Hermitian matrix
\begin{pmatrix} 0&0&-1\\ 0&-1&0\\ -1&0&0 \end{pmatrix} witheigenvectors \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} and \begin{pmatrix} 1\\0\\-1 \end{pmatrix}.
A Hermitian matrix M is positive-semidefinite if and only if all principal minors of M are nonnegative.
Suppose
Mn
n x n
\dagger | |
M | |
n |
=Mn
Mk,k=1,\ldotsn
k x k
Mn
\detMk>0
k
Mk
x=\left(\begin{array}{c}x1\ \vdots\ xk\ 0\ \vdots\\0\end{array} \right)=\left(\begin{array}{c} \vec{x}\\ 0\\ \vdots\\ 0 \end{array} \right)
we can notice that
0<x\daggerMnx=\vec{x}\daggerMk\vec{x}.
Mk
\detMk>0
To prove the reverse implication, we use induction. The general form of an
(n+1) x (n+1)
Mn+1=\left(
\dagger | |
\begin{array}{cc}M | |
n&\vec{v}\ \vec{v} |
&d\end{array}\right) (*)
where
Mn
n x n
\vec{v}
d
Suppose the criterion holds for
Mn
Mn+1
\detMn+1>0
\detMn>0
Mn
x=\left(\begin{array}{c}\vec{x}\ xn+1\end{array}\right)
then
x\daggerMn+1x=\vec{x}\daggerMn\vec{x}+xn+1\vec{x}\dagger\vec{v}+\bar{x}n+1\vec{v}\dagger\vec{x}+d|xn+1|2
(\vec{x}\dagger+\vec{v}\dagger
-1 | |
M | |
n |
\bar{x}n+1)Mn(\vec{x}+xn+1
-1 | |
M | |
n |
\vec{v})-|xn+1|2\vec{v}\dagger
-1 | |
M | |
n |
\vec{v}+d|xn+1|2
=(\vec{x}+\vec{c})\daggerMn(\vec{x}+\vec{c})+|xn+1|2(d-\vec{v}\dagger
-1 | |
M | |
n |
\vec{v})
\vec{c}=xn+1
-1 | |
M | |
n |
\vec{v}
-1 | |
M | |
n |
Mn
\det\left(\begin{array}{cc}A&B\\C&D\end{array}\right)=\detA\det(D-CA-1B)
on
(*)
\detMn+1=\det
\dagger | |
M | |
n(d-\vec{v} |
-1 | |
M | |
n |
\vec{v})>0
d-\vec{v}\dagger
-1 | |
M | |
n |
\vec{v}>0
x\daggerMn+1x>0.
Let
Mn
Mn
Mn
For the reverse implication, it suffices to show that if
Mn
Mn+tIn
In
Mn+tIn
t\to0
To show this, let
Mk
Mn.
qk(t)=\det(Mk+tIk)
p | |
Mk |
Mk.
From Minor_(linear_algebra)#Multilinear_algebra_approach, we know that the entries in the matrix expansion of
wedgejMk
Mk.
Mk
Mn
tk-j
qk(t)
qk(t)>0