A two dimensional Minkowski space, i.e. a flat space with one time and one spatial dimension, has a two-dimensional Poincaré group IO(1,1) as its symmetry group. The respective Lie algebra is called the Poincaré algebra. It is possible to extend this algebra to a supersymmetry algebra, which is a
Z2
Let the Lie algebra of IO(1,1) be generated by the following generators:
H=P0
P=P1
M=M01
The
l{N}=(2,2)
Q+,Q-,\overline{Q}+,\overline{Q}-
Q+
\overline{Q}+
Q-
\overline{Q}-
2 | |
\begin{align} &\begin{align} &Q | |
+ |
=
2 | |
Q | |
- |
=
2 | |
\overline{Q} | |
+ |
=
2 | |
\overline{Q} | |
- |
=0,\\ &\{Q\pm,\overline{Q}\pm\}=H\pmP,\\ \end{align}\\ &\begin{align} &\{\overline{Q}+,\overline{Q}-\}=Z,&&\{Q+,Q-\}=Z*,\\ &\{Q-,\overline{Q}+\}=\tilde{Z},&&\{Q+,\overline{Q}-\}=\tilde{Z}*,\\ &{[iM,Q\pm]}=\mpQ\pm,&&{[iM,\overline{Q}\pm]}=\mp\overline{Q}\pm, \end{align} \end{align}
where all remaining commutators vanish, and
Z
\tilde{Z}
\dagger | |
Q | |
\pm |
=\overline{Q}\pm
H
P
M
The
l{N}=(0,2)
l{N}=(2,2)
Q-
\overline{Q}-
2 | |
\begin{align} &Q | |
+ |
=
2 | |
\overline{Q} | |
+ |
=0,\\ &\{Q+,\overline{Q}+\}=H+P\\ \end{align}
plus the commutation relations above that do not involve
Q-
\overline{Q}-
Similarly, the
l{N}=(2,0)
Q+
\overline{Q}+
2 | |
\begin{align} &Q | |
- |
=
2 | |
\overline{Q} | |
- |
=0,\\ &\{Q-,\overline{Q}-\}=H-P.\\ \end{align}
Both supercharge generators are right-handed.
The
l{N}=(1,1)
1 | |
Q | |
+ |
1 | |
Q | |
- |
1 | |
\begin{align} Q | |
\pm |
=
i\nu\pm | |
e |
Q\pm+
-i\nu\pm | |
e |
\overline{Q}\pm\end{align}
\nu+
\nu-
By definition, both supercharges are real, i.e.
1) | |
(Q | |
\pm |
\dagger=
1 | |
Q | |
\pm |
\begin{align} &\{
1 | |
Q | |
\pm |
,
1 | |
Q | |
\pm |
\}=2(H\pmP),\\ &\{
1 | |
Q | |
+ |
,
1 | |
Q | |
- |
\}=Z1, \end{align}
where
Z1
These algebras can be obtained from the
l{N}=(1,1)
1 | |
Q | |
- |
1 | |
Q | |
+ |