Rationality: | irrational algebraic |
Continued Fraction Linear: | [2;4,1,6,2,1,1,1,1,1,1,2,2,1,2,1,...] |
Continued Fraction Periodic: | not periodic |
Continued Fraction Finite: | infinite |
Algebraic: | real root of |
In mathematics, the supersilver ratio is a geometrical proportion close to . Its true value is the real solution of the equation
The name supersilver ratio results from analogy with the silver ratio, the positive solution of the equation, and the supergolden ratio.
Two quantities are in the supersilver ratio-squared if
\left(
2a+b | |
a |
\right)2=
a | |
b |
2a+b | |
a |
Based on this definition, one has
\begin{align} 1&=\left(
2a+b | |
a |
\right)2
b | |
a |
\\ &=\left(
2a+b | |
a |
\right)2\left(
2a+b | |
a |
-2\right)\\ &\implies\varsigma2\left(\varsigma-2\right)=1\end{align}
It follows that the supersilver ratio is found as the unique real solution of the cubic equation
\varsigma3-2\varsigma2-1=0.
2.205569430400590...
The minimal polynomial for the reciprocal root is the depressed cubic
x3+2x-1,
w1,2=\left(1\pm
1 | |
3 |
\sqrt{
59 | |
3 |
1/\varsigma=\sqrt[3]{w1}+\sqrt[3]{w2}
1/\varsigma=-2\sqrt
2 | |
3 |
\sinh\left(
1 | |
3 |
\operatorname{arsinh}\left(-
3 | \sqrt | |
4 |
3 | |
2 |
\right)\right).
is the superstable fixed point of the iteration
x\gets(2x3+1)/(3x2+2).
Rewrite the minimal polynomial as
(x2+1)2=1+x
x\gets\sqrt{-1+\sqrt{1+x}}
1/\varsigma=\sqrt{-1+\sqrt{1+\sqrt{-1+\sqrt{1+ … }}}}
Dividing the defining trinomial
x3-2x2-1
x2+x/\varsigma2+1/\varsigma
x1,2=\left(-1\pmi\sqrt{8\varsigma2+3}\right)/2\varsigma2,
x1+x2=2-\varsigma
x1x2=1/\varsigma.
The growth rate of the average value of the n-th term of a random Fibonacci sequence is .
The supersilver ratio can be expressed in terms of itself as the infinite geometric series
\varsigma=
infty | |
2\sum | |
k=0 |
\varsigma-3k
\varsigma2=-1
infty | |
+\sum | |
k=0 |
(\varsigma-1)-k,
\sigma=
infty | |
2\sum | |
k=0 |
\sigma-2k
\sigma2=-1
infty | |
+2\sum | |
k=0 |
(\sigma-1)-k.
For every integer
n
\begin{align} \varsigman&=2\varsigman-1+\varsigman-3\\ &=4\varsigman-2+\varsigman-3+2\varsigman-4\\ &=\varsigman-1+2\varsigman-2+\varsigman-3+\varsigman-4.\end{align}
Continued fraction pattern of a few low powers
\varsigma-2=[0;4,1,6,2,1,1,1,1,1,1,...] ≈ 0.2056
\varsigma-1=[0;2,4,1,6,2,1,1,1,1,1,...] ≈ 0.4534
\varsigma0=[1]
\varsigma1=[2;4,1,6,2,1,1,1,1,1,1,...] ≈ 2.2056
\varsigma2=[4;1,6,2,1,1,1,1,1,1,2,...] ≈ 4.8645
\varsigma3=[10;1,2,1,2,4,4,2,2,6,2,...] ≈ 10.729
1/\sqrt{\varsigma}
\varsigma10=2724.00146856... ≈ 2724+1/681.
The minimal polynomial of the supersilver ratio
m(x)=x3-2x2-1
\Delta=-59
(x-21)2(x-19)\pmod{59};
K=Q(\sqrt{\Delta})
\tau=(1+\sqrt{\Delta})/2
(\varsigma-6-27\varsigma6-6)3.
The Weber-Ramanujan class invariant is approximated with error by
\sqrt{2}ak{f}(\sqrt{\Delta})=\sqrt[4]{2}G59 ≈ (e\pi
W59(x)=x9-4x8+4x7-2x6+4x5-8x4+4x3-8x2+16x-8.
kr=λ*(r)
λ*(59)=\sin(\arcsin\left(
-12 | |
G | |
59 |
\right)/2)
These numbers are related to the supersilver ratio as the Pell numbers and Pell-Lucas numbers are to the silver ratio.
The fundamental sequence is defined by the third-order recurrence relation
Sn=2Sn-1+Sn-3
S0=1,S1=2,S2=4.
The first few terms are 1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064,... .The limit ratio between consecutive terms is the supersilver ratio.
The first 8 indices n for which
Sn
The sequence can be extended to negative indices using
Sn=Sn+3-2Sn+2
The generating function of the sequence is given by
1 | |
1-2x-x3 |
=
infty | |
\sum | |
n=0 |
Snxn
x<1/\varsigma .
The third-order Pell numbers are related to sums of binomial coefficients by
Sn
\lfloorn/3\rfloor | |
=\sum | |
k=0 |
{n-2k\choosek} ⋅ 2n
The characteristic equation of the recurrence is
x3-2x2-1=0.
Sn-2=a\alphan+b\betan+c\gamman,
59x3+4x-1=0.
\left\vertb\betan+c\gamman\right\vert<1/\sqrt{\alphan
\alpha=\varsigma,
a\varsigman+2,
a=\varsigma/(2\varsigma2+3)=
Coefficients
a=b=c=1
An=Sn+2Sn-3.
The first few terms are 3, 2, 4, 11, 24, 52, 115, 254, 560, 1235, 2724, 6008,... .
This third-order Pell-Lucas sequence has the Fermat property: if p is prime,
Ap\equivA1\bmodp.
n\mid(An-2)
Q=\begin{pmatrix}2&0&1\ 1&0&0\ 0&1&0\end{pmatrix},
The trace of gives the above
Alternatively, can be interpreted as incidence matrix for a D0L Lindenmayer system on the alphabet with corresponding substitution rule
\begin{cases} a \mapsto aab\\ b \mapsto c\\ c \mapsto a \end{cases}
l(wn)=Sn-2+Sn-3+Sn-4.
Associated to this string rewriting process is a compact set composed of self-similar tiles called the Rauzy fractal, that visualizes the combinatorial information contained in a multiple-generation three-letter sequence.[8]
A supersilver rectangle is a rectangle whose side lengths are in a ratio. Compared to the silver rectangle, containing a single scaled copy of itself, the supersilver rectangle has one more degree of self-similarity.
Given a rectangle of height and length . On the right-hand side, cut off a square of side length and mark the intersection with the falling diagonal. The remaining rectangle now has aspect ratio
1+1/\varsigma2:1
\varsigma=2+1/\varsigma2
Along the diagonal are two supersilver rectangles. The original rectangle and the scaled copies have diagonal lengths in the ratios
\varsigma/(\varsigma-1):(\varsigma-1):1
\varsigma2/(\varsigma-1)2:(\varsigma-1)2:1.
(\varsigma-1)/\varsigma,
\varsigma+1/\varsigma
\varsigma/(\varsigma-1)
The process can be repeated in the smallest supersilver rectangle at a scale of
1:\varsigma.
The lower right triangle has altitude
1/\sqrt{\varsigma-1};
\left(\varsigma-1,
\varsigma-1 | |
\varsigma |
\right)
1/(\varsigma+1).
\varsigma2,\varsigma,1,\varsigma ,
(\varsigma-1)2:\varsigma:1
x3=2x2+1
x2=2x+1
x2=x+1
x3=x2+1