Sum rules (quantum field theory) explained

In quantum field theory, a sum rule is a relation between a static quantity and an integral over a dynamical quantity. Therefore, they have a form such as:

\intA(x)dx=B

where

A(x)

is the dynamical quantity, for example a structure function characterizing a particle, and

B

is the static quantity, for example the mass or the charge of that particle.

Quantum field theory sum rules should not be confused with sum rules in quantum chromodynamics or quantum mechanics.

Properties

Many sum rules exist. The validity of a particular sum rule can be sound if its derivation is based on solid assumptions, or on the contrary, some sum rules have been shown experimentally to be incorrect, due to unwarranted assumptions made in their derivation. The list of sum rules below illustrate this.

Sum rules are usually obtained by combining a dispersion relation with the optical theorem,[1] using the operator product expansion or current algebra.[2]

Quantum field theory sum rules are useful in a variety of ways. They permit to test the theory used to derive them, e.g. quantum chromodynamics, or an assumption made for the derivation, e.g. Lorentz invariance. They can be used to study a particle, e.g. how does the spins of partons make up the spin of the proton. They can also be used as a measurement method. If the static quantity

B

is difficult to measure directly, measuring

A(x)

and integrating it offers a practical way to obtain

B

(providing that the particular sum rule linking

A(x)

to

B

is reliable).

Although in principle,

B

is a static quantity, the denomination of sum rule has been extended to the case where

B

is a probability amplitude, e.g. the probability amplitude of Compton scattering, see the list of sum rules below.

List of sum rules

(The list is not exhaustive)

1
\int
0
p\nu
F
1
p\bar{\nu
(x,Q
1
}(x,Q^2) dx= \int_0^1 F_1^(x,Q^2)-F_1^(x,Q^2) dx =1-\frac\frac, where
p\nu
F
1
p\bar{\nu
(x,Q
1
}(x,Q^2) and
n\nu
F
1

(x,Q2)

are the first structure functions for the proton-neutrino, proton-antineutrino and neutron-neutrino deep inelastic scattering reactions,

Q2

is the square of the 4-momentum exchanged between the nucleon and the (anti)neutrino in the reaction, and

\alphas

is the QCD coupling.

Q2

. The sum rule is:
1
\int
0
2)
g
2(x,Q

dx=0,~\forall~Q2

where
2)
g
2(x,Q
is the second spin structure function of the object studied.

\deltaLT

sum rule.[10]

See also

Notes and References

  1. 1805.10482 . 10.1146/annurev-nucl-101917-020843 . Dispersion Theory in Electromagnetic Interactions . 2018 . Pasquini . Barbara . Vanderhaeghen . Marc . Annual Review of Nuclear and Particle Science . 68 . 75–103 . 2018ARNPS..68...75P .
  2. 1807.05250 . 10.1088/1361-6633/ab0b8f . The spin structure of the nucleon . 2019 . Deur . Alexandre . Brodsky . Stanley J. . De Téramond . Guy F. . Reports on Progress in Physics . 82 . 7 . 30818290 . 2019RPPh...82g6201D .
  3. Adler . Stephen L. . 1966 . Sum Rules Giving Tests of Local Current Commutation Relations in High-Energy Neutrino Reactions . Physical Review . 143 . 4 . 1144–1155 . 10.1103/PhysRev.143.1144. 1966PhRv..143.1144A .
  4. Baldin . A. M. . 1960 . Polarizability of nucleons . Nuclear Physics . en . 18 . 310–317 . 10.1016/0029-5582(60)90408-9. 1960NucPh..18..310B .
  5. 1401.0140 . 10.1146/annurev-nucl-102313-025555 . Hadron Polarizabilities . 2014 . Holstein . Barry R. . Scherer . Stefan . Annual Review of Nuclear and Particle Science . 64 . 1 . 51–81 . 2014ARNPS..64...51H .
  6. Bjorken . J. D. . 1966 . Applications of the Chiral ⁡(6)⊗⁡(6) Algebra of Current Densities . Physical Review . 148 . 4 . 1467–1478 . 10.1103/PhysRev.148.1467.
  7. https://inspirehep.net/files/639d14249a23be3f8107142df1e6cd75 J. D. Bjorken (1970) “Inelastic scattering of polarized leptons from polarized nucleons”
  8. Broadhurst. D. J. . Kataev. A. L.. 2002. Bjorken unpolarized and polarized sum rules: Comparative analysis of large N(F) expansions. Phys. Lett. B . 544. 1–2 . 154–160. 10.1016/S0370-2693(02)02478-4. hep-ph/0207261. 2002PhLB..544..154B . 17436687 .
  9. Burkhardt . Hugh . Cottingham . W.N . 1970 . Sum rules for forward virtual compton scattering . Annals of Physics . en . 56 . 2 . 453–463 . 10.1016/0003-4916(70)90025-4. 1970AnPhy..56..453B .
  10. nucl-th/9605031 . 10.1016/0375-9474(95)00217-O . Virtual compton scattering and generalized polarizabilities of the proton . 1995 . Guichon . P.A.M. . Liu . G.Q. . Thomas . A.W. . Nuclear Physics A . 591 . 4 . 606–638 . 1995NuPhA.591..606G .
  11. hep-ph/9607217 . 10.1103/PhysRevD.55.4307 . Exact sum rule for transversely polarized DIS . 1997 . Efremov . A. V. . Teryaev . O. V. . Leader . Elliot . Physical Review D . 55 . 7 . 4307–4314 . 1997PhRvD..55.4307E .
  12. Sum rule for deep-inelastic electroproduction from polarized protons . 10.1103/PhysRevD.9.1444 . 1974 . Ellis . John . Jaffe . Robert . Physical Review D . 9 . 5 . 1444–1446 . 1974PhRvD...9.1444E .
  13. A dispersion theory of symmetry breaking . 10.1007/BF02824674 . 1965 . Fubini . S. . Furlan . G. . Rossetti . C. . Il Nuovo Cimento A . 40 . 4 . 1171–1193 . 1965NCimA..40.1171F .
  14. https://inspirehep.net/literature/48796 S. B. Gerasimov (1965) “A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei”
  15. Exact Sum Rule for Nucleon Magnetic Moments . 10.1103/PhysRevLett.16.908 . 1966 . Drell . S. D. . Hearn . A. C. . Physical Review Letters . 16 . 20 . 908–911 . 1966PhRvL..16..908D . 1444298 .
  16. Hosoda . Masataka . Yamamoto . Kunio . 1966 . Sum Rule for the Magnetic Moment of the Dirac Particle . Progress of Theoretical Physics . en . 36 . 2 . 425–426 . 10.1143/PTP.36.425 . free. 1966PThPh..36..425H .
  17. Sum Rule for High-Energy Electron-Proton Scattering . 10.1103/PhysRevLett.18.1174 . 1967 . Gottfried . Kurt . Physical Review Letters . 18 . 25 . 1174–1177 . 1967PhRvL..18.1174G .
  18. Gross . David J. . Smith . C.H.Llewellyn . 1969 . High-energy neutrino-nucleon scattering, current algebra and partons . Nuclear Physics B . en . 14 . 2 . 337–347 . 10.1016/0550-3213(69)90213-2. 1969NuPhB..14..337G .
  19. Collins . John C. . Soper . Davison E. . 1982 . Parton distribution and decay functions . Nuclear Physics B . 194 . 3 . 445–492 . 10.1016/0550-3213(82)90021-9. 1982NuPhB.194..445C .
  20. Ji. Xiangdong. 1997-01-27. Gauge-Invariant Decomposition of Nucleon Spin. Physical Review Letters. 78. 4. 610–613. 10.1103/PhysRevLett.78.610. hep-ph/9603249. 1997PhRvL..78..610J. 15573151.
  21. Ji . X. D. . QCD Analysis of the Mass Structure of the Nucleon . Physical Review Letters . 1995 . 74 . 6 . 1071–1074 . 10.1103/PhysRevLett.74.1071 . 10058927 . hep-ph/9410274 . 1995PhRvL..74.1071J .
  22. Ji . X. D. . Breakup of hadron masses and the energy-momentum tensor of QCD . Physical Review D . 1995 . 52 . 1 . 271–281 . 10.1103/PhysRevD.52.271 . 10019040 . hep-ph/9502213 . 1995PhRvD..52..271J .
  23. Schwinger . Julian . 1975 . Source Theory Discussion of Deep Inelastic Scattering with Polarized Particles . Proceedings of the National Academy of Sciences of the United States of America . 72 . 4 . 1559–1563. 10.1073/pnas.72.4.1559 . free . 64895 . 16592243 . 432577 . 1975PNAS...72.1559S .
  24. Wandzura . S. . Wilczek . F. . 1977 . Sum rules for spin-dependent electroproduction- test of relativistic constituent quarks . Physics Letters B . en . 72 . 2 . 195–198 . 10.1016/0370-2693(77)90700-6. 1977PhLB...72..195W .