Sum of squares explained
In mathematics, statistics and elsewhere, sums of squares occur in a number of contexts:
Statistics
Number theory
, asked for an exact expression for the sum of the squares of the reciprocals of all positive integers.
- Rational trigonometry's triple-quad rule and triple-spread rule contain sums of squares, similar to Heron's formula.
- Squaring the square is a combinatorial problem of dividing a two-dimensional square with integer side length into smaller such squares.
Algebra, algebraic geometry, and optimization
- Polynomial SOS, polynomials that are sums of squares of other polynomials
- The Brahmagupta–Fibonacci identity, representing the product of sums of two squares of polynomials as another sum of squares
- Hilbert's seventeenth problem on characterizing the polynomials with non-negative values as sums of squares
- Sum-of-squares optimization, nonlinear programming with polynomial SOS constraints
- The sum of squared dimensions of a finite group's pairwise nonequivalent complex representations is equal to cardinality of that group.
Euclidean geometry and other inner-product spaces
- The Pythagorean theorem says that the square on the hypotenuse of a right triangle is equal in area to the sum of the squares on the legs. The sum of squares is not factorable.
- The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates
- Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)
- The British flag theorem for rectangles equates two sums of two squares
- The parallelogram law equates the sum of the squares of the four sides to the sum of the squares of the diagonals
- Descartes' theorem for four kissing circles involves sums of squares
- The sum of the squares of the edges of a rectangular cuboid equals the square of any space diagonal
See also