Subdivision surface explained

In the field of 3D computer graphics, a subdivision surface (commonly shortened to SubD surface or Subsurf) is a curved surface represented by the specification of a coarser polygon mesh and produced by a recursive algorithmic method. The curved surface, the underlying inner mesh,[1] can be calculated from the coarse mesh, known as the control cage or outer mesh, as the functional limit of an iterative process of subdividing each polygonal face into smaller faces that better approximate the final underlying curved surface. Less commonly, a simple algorithm is used to add geometry to a mesh by subdividing the faces into smaller ones without changing the overall shape or volume.

The opposite is reducing polygons or un-subdividing.[2]

Overview

A subdivision surface algorithm is recursive in nature. The process starts with a base level polygonal mesh. A refinement scheme is then applied to this mesh. This process takes that mesh and subdivides it, creating new vertices and new faces. The positions of the new vertices in the mesh are computed based on the positions of nearby old vertices, edges, and/or faces. In many refinement schemes, the positions of old vertices are also altered (possibly based on the positions of new vertices).

This process produces a denser mesh than the original one, containing more polygonal faces (often by a factor of 4). This resulting mesh can be passed through the same refinement scheme again and again to produce more and more refined meshes. Each iteration is often called a subdivision level, starting at zero (before any refinement occurs).

The limit subdivision surface is the surface produced from this process being iteratively applied infinitely many times. In practical use however, this algorithm is only applied a limited, and fairly small (

\leq5

), number of times.

Mathematically, the neighborhood of an extraordinary vertex (non-4-valent node for quad refined meshes) of a subdivision surface is a spline with a parametrically singular point.[3]

Refinement schemes

Subdivision surface refinement schemes can be broadly classified into two categories: interpolating and approximating.

In general, approximating schemes have greater smoothness, but the user has less overall control of the outcome. This is analogous to spline surfaces and curves, where Bézier curves are required to interpolate certain control points, while B-Splines are not (and are more approximate).

Subdivision surface schemes can also be categorized by the type of polygon that they operate on: some function best for quadrilaterals (quads), while others primarily operate on triangles (tris).

Approximating schemes

Approximating means that the limit surfaces approximate the initial meshes, and that after subdivision the newly generated control points are not in the limit surfaces. There are five approximating subdivision schemes:

Interpolating schemes

After subdivision, the control points of the original mesh and the newly generated control points are interpolated on the limit surface. The earliest work was so-called "butterfly scheme" by Dyn, Levin and Gregory (1990), who extended the four-point interpolatory subdivision scheme for curves to a subdivision scheme for surface. Zorin, Schröder and Sweldens (1996) noticed that the butterfly scheme cannot generate smooth surfaces for irregular triangle meshes and thus modified this scheme. Kobbelt (1996) further generalized the four-point interpolatory subdivision scheme for curves to the tensor product subdivision scheme for surfaces. In 1991, Nasri proposed a scheme for interpolating Doo-Sabin;[11] while in 1993 Halstead, Kass, and DeRose proposed one for Catmull-Clark.[12]

Key developments

See also

External links

Notes and References

  1. Web site: Subdivision Surfaces. 19 January 2021. nevercenter.com.
  2. https://all3dp.com/2/blender-how-to-reduce-polygons/ Blender: Reduce Polygons – Simply Explained
  3. J. Peters and U. Reif: Subdivision Surfaces, Springer series Geometry and Computing monograph 3, 2008, doi
  4. J. Peters and U. Reif: Analysis of generalized B-spline subdivision algorithms, SIAM J of Numer. Anal. 32 (2) 1998, p.728-748
  5. Web site: Chaikin Curves in Processing.
  6. K. Karciauskas and J. Peters: Point-augmented biquadratic C1 subdivision surfaces, Graphical Models, 77, p.18-26 http://doi:10.1016/j.gmod.2014.10.003
  7. Joy. Ken. 1996–2000. DOO-SABIN SURFACES. On-Line Geometric Modeling Notes. UC Davis.
  8. J. Peters and U. Reif: The simplest subdivision scheme for smoothing polyhedra, ACM Transactions on Graphics 16(4) (October 1997) p.420-431, doi
  9. A. Habib and J. Warren: Edge and vertex insertion for a class of C1 subdivision surfaces, Computer Aided Geometric Design 16(4) (May 1999) p.223-247, doi
  10. L. Kobbelt: √3-subdivision, 27th annual conference on Computer graphics and interactive techniques, doi
  11. Nasri, A. H. Surface interpolation on irregular networks with normal conditions. Computer Aided Geometric Design 8 (1991), 89–96.
  12. Halstead, M., Kass, M., and DeRose, T. Efficient, Fair Interpolation Using Catmull-Clark Surfaces. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM Siggraph
  13. Zorin. Denis. Schröder. Peter. Sweldens. Wim. 1996. Interpolating Subdivision for Meshes with Arbitrary Topology. Department of Computer Science, California Institute of Technology, Pasadena, CA 91125.
  14. Ulrich Reif. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design. 12(2)153–174
  15. Jos Stam, "Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values", Proceedings of SIGGRAPH'98. In Computer Graphics Proceedings, ACM SIGGRAPH, 1998, 395–404