SuanShu numerical library explained
SuanShu |
Latest Release Version: | 20120606 |
Latest Release Date: | 2012-06-06 |
Programming Language: | Java |
Genre: | Math |
License: | Apache License 2.0 |
SuanShu is a Java math library. It is open-source under Apache License 2.0 available in GitHub. SuanShu is a large collection of Java classes for basic numerical analysis, statistics, and optimization.[1] It implements a parallel version of the adaptive strassen's algorithm for fast matrix multiplication.[2] SuanShu has been quoted and used in a number of academic works.[3] [4] [5] [6]
Features
- linear algebra
- root finding
- curve fitting and interpolation
- unconstrained and constrained optimization
- statistical analysis
- linear regression
- probability distributions and random number generation
- ordinary and partial differential equation solvers
License terms
SuanShu is released under the terms of the Apache License 2.0
Examples of usage
The following code shows the object-oriented design of the library (in contrast to the traditional procedural design of many other FORTRAN and C numerical libraries) by a simple example of minimization.
LogGamma logGamma = new LogGamma; // the log-gamma functionBracketSearchMinimizer solver = new BrentMinimizer(1e-8, 10); // precision, max number of iterationsUnivariateMinimizer.Solution soln = solver.solve(logGamma); // optimizationdouble x_min = soln.search(0, 5); // bracket = [0, 5]System.out.println(String.format("f(%f) = %f", x_min, logGamma.evaluate(x_min)));
See also
Notes and References
- Web site: Java Numerics: Main. 2021-03-23. math.nist.gov.
- Web site: 2015-08-07. Fastest Java Matrix Multiplication NM DEV. 2021-08-02. NM DEV Mathematics at Your Fingertips.
- Automatic stability verification via Lyapunov functions: representations, transformations, and practical issues. Universität Oldenburg.. 2018. phd. Eike. Möhlmann.
- Christou. Ioannis T.. Vassilaras. Spyridon. 2013-10-01. A parallel hybrid greedy branch and bound scheme for the maximum distance-2 matching problem. Computers & Operations Research. en. 40. 10. 2387–2397. 10.1016/j.cor.2013.04.009. 0305-0548.
- Łukawska. Barbara. Łukawski. Grzegorz. Sapiecha. Krzysztof. 2016-10-04. An implementation of articial advisor for dynamic classication of objects. Annales Universitatis Mariae Curie-Sklodowska, sectio AI – Informatica. en. 16. 1. 40. 10.17951/ai.2016.16.1.40. 2083-3628. free.
- Book: Ansari, Mohd Samar. Non-Linear Feedback Neural Networks: VLSI Implementations and Applications. 2013-09-03. Springer. 978-81-322-1563-9. en.