In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined:[1] [2] [3]
\boldsymbol{\tau}
\boldsymbol{N}
\boldsymbol{P}
\boldsymbol{P}=\boldsymbol{N}T
\boldsymbol{S}
\boldsymbol{T}
Consider the situation shown in the following figure. The following definitions use the notations shown in the figure.
In the reference configuration\Omega0
d\Gamma0
N\equivn0
t0
df0
\Omega
d\Gamma
n
t
df
\boldsymbol{F}
J
The Cauchy stress (or true stress) is a measure of the force acting on an element of area in the deformed configuration. This tensor is symmetric and is defined via
df=t~d\Gamma=\boldsymbol{\sigma}T ⋅ n~d\Gamma
t=\boldsymbol{\sigma}T ⋅ n
t
n
The quantity,
\boldsymbol{\tau}=J~\boldsymbol{\sigma}
is called the Kirchhoff stress tensor, with
J
\boldsymbol{F}
See main article: Piola–Kirchhoff stress tensor.
The nominal stress
\boldsymbol{N}=\boldsymbol{P}T
\boldsymbol{P}
df=t~d\Gamma=
T ⋅ n | |
\boldsymbol{N} | |
0~d\Gamma |
0=\boldsymbol{P} ⋅ n0~d\Gamma0
t0=t\dfrac{d{\Gamma}}{d\Gamma0}=
T ⋅ n | |
\boldsymbol{N} | |
0 |
=\boldsymbol{P} ⋅ n0
df
df0
df0=\boldsymbol{F}-1 ⋅ df
df0=\boldsymbol{F}-1 ⋅
T ⋅ n | |
\boldsymbol{N} | |
0~d\Gamma |
0 =\boldsymbol{F}-1 ⋅ t0~d\Gamma0
The PK2 stress (
\boldsymbol{S}
df0=
T ⋅ n | |
\boldsymbol{S} | |
0~d\Gamma |
0=\boldsymbol{F}-1 ⋅ t0~d\Gamma0
T ⋅ n | |
\boldsymbol{S} | |
0 |
=\boldsymbol{F}-1 ⋅ t0
\boldsymbol{U}
\boldsymbol{P}T ⋅ \boldsymbol{R}
\boldsymbol{R}
\boldsymbol{T}=\tfrac{1}{2}(\boldsymbol{R}T ⋅ \boldsymbol{P}+\boldsymbol{P}T ⋅ \boldsymbol{R})~.
The quantity
\boldsymbol{T}
\boldsymbol{R}T~df=(\boldsymbol{P}T ⋅ \boldsymbol{R})
T ⋅ n | |
0~d\Gamma |
0
From Nanson's formula relating areas in the reference and deformed configurations:
n~d\Gamma=J~\boldsymbol{F}-T ⋅ n0~d\Gamma0
\boldsymbol{\sigma}T ⋅ n~d\Gamma=df=
T ⋅ n | |
\boldsymbol{N} | |
0~d\Gamma |
0
\boldsymbol{\sigma}T ⋅ (J~\boldsymbol{F}-T ⋅ n0~d\Gamma0)=
T ⋅ n | |
\boldsymbol{N} | |
0~d\Gamma |
0
\boldsymbol{N}T=J~(\boldsymbol{F}-1 ⋅ \boldsymbol{\sigma})T=J~\boldsymbol{\sigma}T ⋅ \boldsymbol{F}-T
\boldsymbol{N}=J~\boldsymbol{F}-1 ⋅ \boldsymbol{\sigma} and \boldsymbol{N}T=\boldsymbol{P}=J~\boldsymbol{\sigma}T ⋅ \boldsymbol{F}-T
NIj=
-1 | |
J~F | |
Ik |
~\sigmakj and PiJ=J~\sigmaki
-1 | |
~F | |
Jk |
J~\boldsymbol{\sigma}=\boldsymbol{F} ⋅ \boldsymbol{N}=\boldsymbol{F} ⋅ \boldsymbol{P}T~.
Note that
\boldsymbol{N}
\boldsymbol{P}
\boldsymbol{F}
Recall that
T ⋅ n | |
\boldsymbol{N} | |
0~d\Gamma |
0=df
df=\boldsymbol{F} ⋅ df0=\boldsymbol{F} ⋅ (\boldsymbol{S}T ⋅ n0~d\Gamma0)
T ⋅ n | |
\boldsymbol{N} | |
0 |
=
T ⋅ n | |
\boldsymbol{F} ⋅ \boldsymbol{S} | |
0 |
\boldsymbol{S}
\boldsymbol{N}=\boldsymbol{S} ⋅ \boldsymbol{F}T and \boldsymbol{P}=\boldsymbol{F} ⋅ \boldsymbol{S}
NIj=SIK
T | |
~F | |
jK |
and PiJ=FiK~SKJ
\boldsymbol{S}=\boldsymbol{N} ⋅ \boldsymbol{F}-T and \boldsymbol{S}=\boldsymbol{F}-1 ⋅ \boldsymbol{P}
Recall that
\boldsymbol{N}=J~\boldsymbol{F}-1 ⋅ \boldsymbol{\sigma}
\boldsymbol{S} ⋅ \boldsymbol{F}T=J~\boldsymbol{F}-1 ⋅ \boldsymbol{\sigma}
\boldsymbol{S}=J~\boldsymbol{F}-1 ⋅ \boldsymbol{\sigma} ⋅ \boldsymbol{F}-T=\boldsymbol{F}-1 ⋅ \boldsymbol{\tau} ⋅ \boldsymbol{F}-T
SIJ=
-1 | |
F | |
Ik |
~\taukl
-1 | |
~F | |
Jl |
Alternatively, we can write
\boldsymbol{\sigma}=J-1~\boldsymbol{F} ⋅ \boldsymbol{S} ⋅ \boldsymbol{F}T
\boldsymbol{\tau}=\boldsymbol{F} ⋅ \boldsymbol{S} ⋅ \boldsymbol{F}T~.
Clearly, from definition of the push-forward and pull-back operations, we have
\boldsymbol{S}=\varphi*[\boldsymbol{\tau}]=\boldsymbol{F}-1 ⋅ \boldsymbol{\tau} ⋅ \boldsymbol{F}-T
\boldsymbol{\tau}=\varphi*[\boldsymbol{S}]=\boldsymbol{F} ⋅ \boldsymbol{S} ⋅ \boldsymbol{F}T~.
\boldsymbol{S}
\boldsymbol{\tau}
\boldsymbol{F}
\boldsymbol{\tau}
\boldsymbol{S}
Key:
Equation for | \boldsymbol{\sigma} | \boldsymbol{\tau} | \boldsymbol{P} | \boldsymbol{S} | \boldsymbol{T} | \boldsymbol{M} | |
---|---|---|---|---|---|---|---|
\boldsymbol{\sigma}= | \boldsymbol{\sigma} | J-1\boldsymbol{\tau} | J-1\boldsymbol{P}\boldsymbol{F}T | J-1\boldsymbol{F}\boldsymbol{S}\boldsymbol{F}T | J-1\boldsymbol{R}\boldsymbol{T}\boldsymbol{F}T | J-1\boldsymbol{F}-T\boldsymbol{M}\boldsymbol{F}T | |
\boldsymbol{\tau}= | J\boldsymbol{\sigma} | \boldsymbol{\tau} | \boldsymbol{P}\boldsymbol{F}T | \boldsymbol{F}\boldsymbol{S}\boldsymbol{F}T | \boldsymbol{R}\boldsymbol{T}\boldsymbol{F}T | \boldsymbol{F}-T\boldsymbol{M}\boldsymbol{F}T | |
\boldsymbol{P}= | J\boldsymbol{\sigma}\boldsymbol{F}-T | \boldsymbol{\tau}\boldsymbol{F}-T | \boldsymbol{P} | \boldsymbol{F}\boldsymbol{S} | \boldsymbol{R}\boldsymbol{T} | \boldsymbol{F}-T\boldsymbol{M} | |
\boldsymbol{S}= | J\boldsymbol{F}-1\boldsymbol{\sigma}\boldsymbol{F}-T | \boldsymbol{F}-1\boldsymbol{\tau}\boldsymbol{F}-T | \boldsymbol{F}-1\boldsymbol{P} | \boldsymbol{S} | \boldsymbol{U}-1\boldsymbol{T} | \boldsymbol{C}-1\boldsymbol{M} | |
\boldsymbol{T}= | J\boldsymbol{R}T\boldsymbol{\sigma}\boldsymbol{F}-T | \boldsymbol{R}T\boldsymbol{\tau}\boldsymbol{F}-T | \boldsymbol{R}T\boldsymbol{P} | \boldsymbol{U}\boldsymbol{S} | \boldsymbol{T} | \boldsymbol{U}-1\boldsymbol{M} | |
\boldsymbol{M}= | J\boldsymbol{F}T\boldsymbol{\sigma}\boldsymbol{F}-T | \boldsymbol{F}T\boldsymbol{\tau}\boldsymbol{F}-T | \boldsymbol{F}T\boldsymbol{P} | \boldsymbol{C}\boldsymbol{S} | \boldsymbol{U}\boldsymbol{T} | \boldsymbol{M} |