In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces (or body forces that could be expressed as potentials) on the boundary are (using index notation) the equilibrium equation:
\sigmaij,i=0
where
\sigma
\sigmaij,kk+
1 | |
1+\nu |
\sigmakk,ij=0
A general solution of these equations may be expressed in terms of the Beltrami stress tensor. Stress functions are derived as special cases of this Beltrami stress tensor which, although less general, sometimes will yield a more tractable method of solution for the elastic equations.
It can be shown [1] that a complete solution to the equilibrium equations may be written as
\sigma=\nabla x \Phi x \nabla
Using index notation:
\sigmaij=\varepsilonikm\varepsilonjln\Phikl,mn
Engineering notation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\sigmax =
+
| \sigmaxy=-
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\sigmay =
| \sigmayz=-
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\sigmaz =
| \sigmazx=-
|
where
\Phimn
\varepsilon
\nabla
\Phimn
The Maxwell stress functions are defined by assuming that the Beltrami stress tensor
\Phimn
\Phiij= \begin{bmatrix} A&0&0\\ 0&B&0\\ 0&0&C \end{bmatrix}
The stress tensor which automatically obeys the equilibrium equation may now be written as:[2]
\sigmax =
+
| \sigmayz=-
| |||||||||||
\sigmay =
+
| \sigmazx=-
| |||||||||||
\sigmaz =
+
| \sigmaxy=-
|
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami–Michell compatibility equations for stress. Substituting the expressions for the stress into the Beltrami–Michell equations yields the expression of the elastostatic problem in terms of the stress functions:[3]
\nabla4A+\nabla4B+\nabla4C=3\left(
\partial2A | + | |
\partialx2 |
\partial2B | + | |
\partialy2 |
\partial2C | |
\partialz2 |
\right)/(2-\nu),
These must also yield a stress tensor which obeys the specified boundary conditions.
The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that A=B=0 and C is a function of x and y only.[2] This stress function can therefore be used only for two-dimensional problems. In the elasticity literature, the stress function
C
\varphi
\sigmax=
\partial2\varphi | |
\partialy2 |
~;~~ \sigmay=
\partial2\varphi | |
\partialx2 |
~;~~ \sigmaxy=-
\partial2\varphi | |
\partialx\partialy |
-(fxy+fyx)
fx
fy
In polar coordinates the expressions are:
\sigmarr=
1 | |
r |
\partial\varphi | |
\partialr |
+
1 | |
r2 |
\partial2\varphi | |
\partial\theta2 |
~;~~ \sigma\theta\theta=
\partial2\varphi | |
\partialr2 |
~;~~ \sigmar\theta=\sigma\theta=-
\partial | |
\partialr |
\left(
1 | |
r |
\partial\varphi | |
\partial\theta |
\right)
The Morera stress functions are defined by assuming that the Beltrami stress tensor
\Phimn
\Phiij= \begin{bmatrix} 0&C&B\\ C&0&A\\ B&A&0 \end{bmatrix}
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions:[4]
\sigmax =-2
| \sigmayz=-
| ||||||||||||||||
\sigmay =-2
| \sigmazx=-
| ||||||||||||||||
\sigmaz =-2
| \sigmaxy=-
|
The Prandtl stress function is a special case of the Morera stress functions, in which it is assumed that A=B=0 and C is a function of x and y only.