A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient.
W=\hat{W}(\boldsymbol{C})=\hat{W}(\boldsymbol{F}T ⋅ \boldsymbol{F})=\bar{W}(\boldsymbol{F})=\bar{W}(\boldsymbol{B}1/2 ⋅ \boldsymbol{R})=\tilde{W}(\boldsymbol{B},\boldsymbol{R})
W=\hat{W}(\boldsymbol{C})=\hat{W}(\boldsymbol{R}T ⋅ \boldsymbol{B} ⋅ \boldsymbol{R})=\tilde{W}(\boldsymbol{B},\boldsymbol{R})
\boldsymbol{F}
\boldsymbol{C}
\boldsymbol{B}
\boldsymbol{R}
\boldsymbol{F}
For an anisotropic material, the strain energy density function
\hat{W}(\boldsymbol{C})
\tilde{W}(\boldsymbol{B},\boldsymbol{R})
\boldsymbol{R}
For an isotropic material, consideration of the principle of material frame indifference leads to the conclusion that the strain energy density function depends only on the invariants of
\boldsymbol{C}
\boldsymbol{B}
For isotropic materials,
W=\hat{W}(λ1,λ2,λ3)=\tilde{W}(I1,I2,I3)=\bar{W}(\bar{I}1,\bar{I}2,J)=
c, | |
U(I | |
1 |
c, | |
I | |
2 |
c) | |
I | |
3 |
\begin{align} \bar{I}1&=J-2/3~I1~;~~I1=
2 | |
λ | |
1 |
+
2+ | |
λ | |
2 |
2 | |
λ | |
3 |
~;~~J=\det(\boldsymbol{F})\\ \bar{I}2&=J-4/3~I2~;~~I2=
2 | |
λ | |
1 |
2 | |
λ | |
2 |
+
2 | |
λ | |
2 |
2 | |
λ | |
3 |
+
2 | |
λ | |
3 |
2 | |
λ | |
1 |
\end{align}
W=
1 | |
2 |
3 | |
\sum | |
i=1 |
3 | |
\sum | |
j=1 |
\sigmaij\epsilonij=
1 | |
2 |
(\sigmax\epsilonx+\sigmay\epsilony+\sigmaz\epsilonz+2\sigmaxy\epsilonxy+2\sigmayz\epsilonyz+2\sigmaxz\epsilonxz)
A strain energy density function is used to define a hyperelastic material by postulating that the stress in the material can be obtained by taking the derivative of
W
For isothermal elastic processes, the strain energy density function relates to the specific Helmholtz free energy function
\psi
W=\rho0\psi .
u
W=\rho0u .
Some examples of hyperelastic constitutive equations are:[5]