In mathematics, the Stolz–Cesàro theorem is a criterion for proving the convergence of a sequence. It is named after mathematicians Otto Stolz and Ernesto Cesàro, who stated and proved it for the first time.
The Stolz–Cesàro theorem can be viewed as a generalization of the Cesàro mean, but also as a l'Hôpital's rule for sequences.
Let
(an)n
(bn)n
(bn)n
+infty
-infty
\limn
an+1-an | |
bn+1-bn |
=l.
\limn
an | |
bn |
=l.
Let
(an)n
(bn)n
(an)\to0
(bn)\to0
(bn)n
\limn
an+1-an | |
bn+1-bn |
=l,
\limn
an | |
bn |
=l.
Case 1: suppose
(bn)
+infty
-infty<l<infty
\epsilon/2>0
\nu>0
\foralln>\nu
\left| | an+1-an |
bn+1-bn |
-l\right|<
\epsilon | |
2 |
,
l-\epsilon/2< | an+1-an |
bn+1-bn |
<l+\epsilon/2, \foralln>\nu.
(bn)
bn+1-bn>0
(l-\epsilon/2)(bn+1-bn)<an+1-an<(l+\epsilon/2)(bn+1-bn), \foralln>\nu
an=[(an-an-1)+...+(a\nu+2-a\nu+1)]+a\nu+1
\begin{align} &(l-\epsilon/2)(bn-b\nu+1)+a\nu+1=(l-\epsilon/2)[(bn-bn-1)+...+(b\nu+2-b\nu+1)]+a\nu+1<an\\ &an<(l+\epsilon/2)[(bn-bn-1)+...+(b\nu+2-b\nu+1)]+a\nu+1=(l+\epsilon/2)(bn-b\nu+1)+a\nu+1.\end{align}
bn\to+infty
n\toinfty
n0>0
bn>0
n>n0
bn
n>max\{\nu,n0\}
(l-\epsilon/2)+ | a\nu+1-b\nu+1(l-\epsilon/2) | < |
bn |
an | <(l+\epsilon/2)+ | |
bn |
a\nu+1-b\nu+1(l+\epsilon/2) | |
bn |
.
n>n0
N\leqn0
bN=0
\pm | ||||
c | ||||
|
bn\to+infty
\epsilon/2>0
n\pm>n0>0
+ | |
\begin{align} &|c | |
n|<\epsilon/2, \forall |
n>
- | |
n | |
n|<\epsilon/2, \forall |
n>n-, \end{align}
l-\epsilon<
- | |
l-\epsilon/2+c | |
n |
<
an | |
bn |
<
+ | |
l+\epsilon/2+c | |
n<l+\epsilon, \forall |
n>max\lbrace\nu,n\pm\rbrace=:N>0,
(bn)
-infty
l<infty
Case 2: we assume
(bn)
+infty
l=+infty
2M>0
\nu>0
n>\nu
an+1-an | |
bn+1-bn |
>2M.
an>2M(bn-b\nu+1)+a\nu+1, \foralln>\nu,
an | |
bn |
>2M+
a\nu+1-2Mb\nu+1 | |
bn |
, \foralln>max\{\nu,n0\}.
(cn)
n>n0 |
cn:=
a\nu+1-2Mb\nu+1 | |
bn |
\forallM>0\exists\bar{n}>n0>0suchthat-M<cn<M,\foralln>\bar{n},
an | |
bn |
>2M+cn>M, \foralln>max\{\nu,\bar{n}\}=:N.
(bn)
+infty
-infty
l=\pminfty
Case 1: we first consider the case with
l<infty
(bn)
\nu>0
an=(an-an+1)+...+(an+\nu-1-an+\nu)+an+\nu,
\epsilon/2>0,
\existn0
n>n0
\begin{align} &(l-\epsilon/2)(bn-bn+\nu)+an+\nu=(l-\epsilon/2)[(bn-bn+1)+...+(bn+\nu-1-bn+\nu)]+an+\nu<an\\ &an<(l+\epsilon/2)[(bn-bn+1)+...+(bn+\nu-1-bn+\nu)]+an+\nu=(l+\epsilon/2)(bn-bn+\nu)+an+\nu.\end{align}
\pm | |
c | |
\nu |
:=
an+\nu-bn+\nu(l\pm\epsilon/2) | |
bn |
an+\nu,bn+\nu\to0
\nu\toinfty
\epsilon/2>0
\nu\pm>0
+ | |
\begin{align} &|c | |
\nu| |
<\epsilon/2, \forall
- | |
\nu>\nu | |
\nu| |
<\epsilon/2, \forall\nu>\nu-, \end{align}
\nu
\nu
l-\epsilon<
- | |
l-\epsilon/2+c | |
\nu |
<
an | |
bn |
<
+ | |
l+\epsilon/2+c | |
\nu |
<l+\epsilon, \foralln>n0
Case 2: we assume
l=+infty
(bn)
2M>0
n0>0
n>n0,
an+1-an | |
bn+1-bn |
>2M\impliesan-an+1>2M(bn-bn+1).
\nu>0,
an | |
bn |
>2M+
an+\nu-2Mbn+\nu | |
bn |
, \foralln>n0.
c\nu:=
an+\nu-2Mbn+\nu | |
bn |
0
n
\forallM>0~\exists\bar{\nu}>0
-M<c\nu<M,\forall\nu>\bar{\nu},
\nu
an | |
bn |
>2M+c\nu>M, \foralln>n0.
The theorem concerning the case has a few notable consequences which are useful in the computation of limits.
Let
(xn)
l
an:=\sum
nx | |
m=x |
1+...+xn, bn:=n
(bn)
+infty
\limn\toinfty
an+1-an | |
bn+1-bn |
=\limn\toinftyxn+1=\limn\toinftyxn=l
\limn\toinfty
x1+...+xn | |
n |
=\limn\toinftyxn.
Given any sequenceof real numbers, suppose that(xn)n\geq
exists (finite or infinite), then\limn\toinftyxn
\limn\toinfty
x1+...+xn n =\limn\toinftyxn.
Let
(xn)
l
an:=log(x1 … xn), bn:=n,
\limn\toinfty
an+1-an | |
bn+1-bn |
=\limn\toinftylog(
x1 … xn+1 | |
x1 … xn |
)=\limn\toinftylog(xn+1)=\limn\toinftylog(xn)=log(l),
\limn\toinfty
log(x1 … xn) | |
n |
=\limn\toinftylog((x1 …
| ||||
x | ||||
n) |
)=log(l),
\limn\toinfty\sqrt[n]{x1 … xn}=\limn\toinftyxn
Given any sequenceof (strictly) positive real numbers, suppose that(xn)n\geq
exists (finite or infinite), then\limn\toinftyxn
\limn\toinfty\sqrt[n]{x1 … xn}=\limn\toinftyxn.
Suppose we are given a sequence
(yn)n\geq1
\limn\toinfty\sqrt[n]{yn},
y0=1
xn=yn/yn-1
\limn\toinfty\sqrt[n]{x1...xn}=\limn\toinfty\sqrt[n]{
y1...yn | |
y0 ⋅ y1...yn-1 |
\limn\toinfty\sqrt[n]{yn}=\limn\toinftyxn=\limn\toinfty
yn | |
yn-1 |
.
Given any sequenceof (strictly) positive real numbers, suppose that(yn)n\geq
exists (finite or infinite), then\limn\toinfty
yn+1 yn \limn\toinfty\sqrt[n]{yn}=\limn\toinfty
yn+1 yn .
\limn\toinfty\sqrt[n]{n}=\limn\toinfty
n+1 | |
n |
=1.
\begin{align} \limn\toinfty
\sqrt[n]{n! | |
e
The ∞/∞ case is stated and proved on pages 173—175 of Stolz's 1885 book and also on page 54 of Cesàro's 1888 article.
It appears as Problem 70 in Pólya and Szegő (1925).
The general form of the Stolz–Cesàro theorem is the following:[2] If
(an)n\geq
(bn)n\geq
(bn)n
\liminfn\toinfty
an+1-an | |
bn+1-bn |
\leq\liminfn\toinfty
an | |
bn |
\leq\limsupn\toinfty
an | |
bn |
\leq\limsupn\toinfty
an+1-an | |
bn+1-bn |
.
Instead of proving the previous statement, we shall prove a slightly different one; first we introduce a notation: let
(an)n\geq1
An:=\sum
na | |
m |
Letbe any two sequences of real numbers such that(an)n\geq1,(bn)\geq1
}_,bn>0, \foralln\in{Z
,then\limn\toinftyBn=+infty
\liminfn\toinfty
an bn \leq\liminfn\toinfty
An Bn \leq\limsupn\toinfty
An Bn \leq\limsupn\toinfty
an bn .
First we notice that:
\liminfn\toinfty
An | |
Bn |
\leq\limsupn\toinfty
An | |
Bn |
\liminfn\toinfty
an | |
bn |
\leq\liminfn\toinfty
An | |
Bn |
\limsupn\toinfty
An | |
Bn |
\leq\limsupn\toinfty
an | |
bn |
\liminfn\toinftyxn=-\limsupn\toinfty(-xn)
(xn)n\geq1
\limsupn\toinfty
An | |
Bn |
\leq\limsupn\toinfty
an | |
bn |
L:=\limsupn\toinfty
an | |
bn |
=+infty
L<+infty
-infty
\limsup
l>L
\nu>0
an | |
bn |
<l, \foralln>\nu.
An=A\nu+a\nu+...+an<A\nu+l(Bn-B\nu), \foralln>\nu,
bn>0
Bn>0
Bn
An | |
Bn |
<
A\nu-lB\nu | |
Bn |
+l, \foralln>\nu.
Bn\to+infty
n\to+infty
A\nu-lB\nu | |
Bn |
\to0asn\to+infty(keeping\nufixed),
\limsupn\toinfty
An | |
Bn |
\lel, \foralll>L,
\limsupn\toinfty
An | |
Bn |
\leqL=\limsupn\toinfty
an | |
bn |
,
Now, take
(an),(bn)
\alpha1=a1,\alphak=ak-ak-1,\forallk>1 \beta1=b1,\betak=bk-bk-1\forallk>1
(bn)
\betan>0
n
bn\to+infty
\Betan=b1+(b2-b1)+...+(bn-bn-1)=bn\to+infty
(\alphan),(\betan)
(\Alphan),(\Betan)
\limsupn\toinfty
an | |
bn |
=\limsupn\toinfty
\Alphan | |
\Betan |
\leq\limsupn\toinfty
\alphan | |
\betan |
=\limsupn\toinfty
an-an-1 | |
bn-bn-1 |
,