The Stokes operator, named after George Gabriel Stokes, is an unbounded linear operator used in the theory of partial differential equations, specifically in the fields of fluid dynamics and electromagnetics.
If we define
P\sigma
A
A:=-P\sigma\Delta,
where
\Delta\equiv\nabla2
A
l{D}(A)=H2\capV
V=\{\vec{u}\in
n|\operatorname{div}\vec{u}=0\} | |
(H | |
0(\Omega)) |
\Omega
Rn
H2(\Omega)
1 | |
H | |
0(\Omega) |
\vec{u}
For a given domain
\Omega
C2
A
L2
\{wk\}
infty | |
k=1 |
\{λk\}
infty | |
k=1 |
0<λ1<λ2\leqλ3 … \leqλk\leq …
and
λk → infty
k → infty
\alpha>0
A\alpha
\vec{u}\inl{D}(A)
A\alpha
infty | |
\vec{u}=\sum | |
k=1 |
\alpha | |
λ | |
k |
uk\vec{wk}
where
uk:=(\vec{u},\vec{wk})
( ⋅ , ⋅ )
L2(\Omega)
The inverse
A-1
H:=\{\vec{u}\in(L2(\Omega))n|\operatorname{div}\vec{u}=0and\gamma(\vec{u})=0\}
\gamma
A-1:H → V