In mathematics, some boundary value problems can be solved using the methods of stochastic analysis. Perhaps the most celebrated example is Shizuo Kakutani's 1944 solution of the Dirichlet problem for the Laplace operator using Brownian motion. However, it turns out that for a large class of semi-elliptic second-order partial differential equations the associated Dirichlet boundary value problem can be solved using an Itō process that solves an associated stochastic differential equation.
Let
D
\Delta
g
\partialD
\begin{cases}-\Deltau(x)=0,&x\inD\ \displaystyle{\limyu(y)}=g(x),&x\in\partialD\end{cases}
It can be shown that if a solution
u
u(x)
g(x)
D
x
Let
D
L
L=
n | |
\sum | |
i=1 |
bi(x)
\partial | |
\partialxi |
+
n | |
\sum | |
i,j=1 |
aij(x)
\partial2 | |
\partialxi\partialxj |
where the coefficients
bi
aij
\alpha(x)=aij(x)
\begin{cases}-Lu(x)=f(x),&x\inD\ \displaystyle{\limyu(y)}=g(x),&x\in\partialD\end{cases} (P1)
X
A
L
C2
f:Rn → R
X
dXt=b(Xt)dt+\sigma(Xt)dBt
where
B
b
bi
\sigma
1{2} | |
\sigma |
(x)\sigma(x)\top=a(x), \forallx\inRn
For a point
x\inRn
Px
X
X0=x
Ex
Px
\tauD
X
D
In this notation, the candidate solution for (P1) is:
u(x)=Ex\left[g(
X | |
\tauD |
) ⋅
\chi | |
\{\tauD<+infty\ |
provided that
g
Ex\left[
\tauD | |
\int | |
0 |
|f(Xt)|dt\right]<+infty
It turns out that one further condition is required:
Px(\tauD<infty)=1, \forallx\inD
For all
x
X
x
D
u(x)=Ex\left[g(
X | |
\tauD |
)\right]+Ex\left[
\tauD | |
\int | |
0 |
f(Xt)dt\right]
and solves (P1) in the sense that if
l{A}
X
A
C2
\begin{cases}-l{A}u(x)=f(x),&x\inD
\ \displaystyle{\lim | |
t\uparrow\tauD |
u(Xt)}=g(
X | |
\tauD |
),&Px-a.s., \forallx\inD\end{cases} (P2)
Moreover, if satisfies (P2) and there exists a constant
C
x\inD
|v(x)|\leqC\left(1+Ex\left[
\tauD | |
\int | |
0 |
|g(Xs)|ds\right]\right)
then
v=u
. Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications . Sixth. Springer. Berlin . 2003 . 3-540-04758-1. (See Section 9)