Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.[1] [2]
Let
X(t),t\geq0
(l{F}t)t\ge
A:[0,infty)\to[0,infty)
A(0)=0
H(t),t\geq0
H(0)\geq0
M(t),t\geq0
(l{F}t)t\ge
M(0)=0
Assume that for all
t\geq0
X(t)\leq
t | |
\int | |
0 |
X*(u-)dA(u)+M(t)+H(t),
*(u):=\sup | |
X | |
r\in[0,u] |
X(r)
and define
c | ||||
|
p\in(0,1)
T>0
E(H(T)p)<infty
H
E\left[\left(X*(T)\right)
p\vertl{F} | |
0\right]\leq |
cp | |
p |
p\vertl{F} | |
E\left[(H(T)) | |
0\right] |
\exp\left\lbrace
1/p | |
c | |
p |
A(T)\right\rbrace
E(H(T)p)<infty
M
E\left[\left(X*(T)\right)
p\vertl{F} | |
0\right]\leq |
cp+1 | |
p |
p\vertl{F} | |
E\left[(H(T)) | |
0\right] |
\exp\left\lbrace
1/p | |
(c | |
p+1) |
A(T)\right\rbrace
EH(T)<infty,
\displaystyle{E\left[\left(X*(T)\right)
p\vertl{F} | |
0\right]\leq |
cp | |
p |
\left(E\left[
p | |
H(T)\vertl{F} | |
0\right]\right) |
\exp\left\lbrace
1/p | |
c | |
p |
A(T)\right\rbrace}
It has been proven by Lenglart's inequality.[1]