In mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, which are closely related to the Stirling numbers, the Bernoulli numbers, and the generalized Bernoulli polynomials. There are multiple variants of the Stirling polynomial sequence considered below most notably including the Sheffer sequence form of the sequence,
Sk(x)
\sigman(x)
For nonnegative integers k, the Stirling polynomials, Sk(x), are a Sheffer sequence for
(g(t),\bar{f}(t)):=\left(e-t,log\left(
t | |
1-e-t |
\right)\right)
\left({t\over{1-e-t
The Stirling polynomials are a special case of the Nørlund polynomials (or generalized Bernoulli polynomials) [2] each with exponential generating function
\left({t\over{et-1}}\right)aez=
infty | |
\sum | |
k=0 |
k | |
B | |
k(z){t |
\overk!},
given by the relation
Sk(x)=
(x+1) | |
B | |
k |
(x+1)
The first 10 Stirling polynomials are given in the following table:
k | Sk(x) | ||||
---|---|---|---|---|---|
0 | 1 | ||||
1 |
| ||||
2 |
| ||||
3 |
| ||||
4 |
| ||||
5 |
| ||||
6 |
| ||||
7 |
| ||||
8 |
| ||||
9 |
|
fk(n):=S(n+k,n)
gk(n):=c(n,n-k)
c(n,k):=(-1)n-ks(n,k)
n\geq1, k\geq0
k\geq0
fk(n)
gk(n)
n\inZ+
2k
(1 ⋅ 3 ⋅ 5 … (2k-1))/(2k)!
Below
Bk(x)
Bk=Bk(0)
B1=B1(0)=-\tfrac{1}{2};
sm,n
Sm,n
S_k(-m) &= \frac S_ && 0 < m \in \Z\\[6pt]S_k(-1) &= \delta_ \\[6pt]S_k(0) &= (-1)^k B_k \\[6pt]S_k(1) &= (-1)^ ((k-1) B_k+ k B_) \\[6pt]S_k(2) &= \tfrac ((k-1)(k-2) B_k+ 3 k(k-2) B_+ 2 k(k-1) B_) \\[6pt]S_k(k) &= k! \\[6pt]\end
m\in\N
m<k
m\in\N
m\geqk
Sk(x-1)
S_k(x)&= \sum_^k (-1)^ S_ \\[6pt]&= \sum_^k (-1)^n s_ \\[6pt]&= k! \sum_^k (-1)^\sum_^k L_^(-j) \\[6pt]\end Here,
(\alpha) | |
L | |
n |
Another variant of the Stirling polynomial sequence corresponds to a special case of the convolution polynomials studied by Knuth's article [5] and in the Concrete Mathematics reference. We first define these polynomials through the Stirling numbers of the first kind as
\sigman(x)=\left[\begin{matrix}x\ x-n\end{matrix}\right] ⋅
1 | |
x(x-1) … (x-n) |
.
It follows that these polynomials satisfy the next recurrence relation given by
(x+1)\sigman(x+1)=(x-n)\sigman(x)+x\sigman-1(x), n\geq1.
These Stirling "convolution" polynomials may be used to define the Stirling numbers,
\scriptstyle{\left[\begin{matrix}x\ x-n\end{matrix}\right]}
\scriptstyle{\left\{\begin{matrix}x\ x-n\end{matrix}\right\}}
n\geq0
x
n\geq0
n | σn(x) | |||
---|---|---|---|---|
0 |
| |||
1 |
| |||
2 |
x-1) | |||
3 |
2-x) | |||
4 |
x3-30x2+5x+2) | |||
5 |
x4-10x3+5x2+2x) | |||
6 |
x5-315x4+315x3+91x2-42x-16) | |||
7 |
x6-63x5+105x4+7x3-42x2-16x) | |||
8 |
x7-1260x6+3150x5-840x4-2345x3-540x2+404x+144) | |||
9 |
x8-180x7+630x6-448x5-665x4+100x3+404x2+144x) | |||
10 |
x9-1485x8+6930x7-8778x6-8085x5+8195x4+11792x3+2068x2-2288x-768) | |||
This variant of the Stirling polynomial sequence has particularly nice ordinary generating functions of the following forms:
\begin{align}\left(
zez | |
ez-1 |
\right)x&=\sumnx\sigman(x)zn\ \left(
1 | |
z |
ln
1 | |
1-z |
\right)x&=\sumnx\sigman(x+n)zn.\end{align}
More generally, if
l{S}t(z)
ln\left(1-z
t-1 | |
l{S} | |
t(z) |
\right)=-z
t | |
l{S} | |
t(z) |
x | |
l{S} | |
t(z) |
=\sumnx\sigman(x+tn)zn.
We also have the related series identity [6]
\sumn(-1)n-1\sigman(n-1)zn=
z | |
ln(1+z) |
=1+
z | |
2 |
-
z2 | |
12 |
+ … ,
and the Stirling (Sheffer) polynomial related generating functions given by
\sumn(-1)n+1m ⋅ \sigman(n-m)zn=\left(
z | |
ln(1+z) |
\right)m
\sumn(-1)n+1m ⋅ \sigman(m)zn=\left(
z | |
1-e-z |
\right)m.
For integers
0\leqk\leqn
r,s\inC
(r+s)\sigman(r+s+tn)=rs
n | |
\sum | |
k=0 |
\sigmak(r+tk)\sigman-k(s+t(n-k))
and
n\sigman(r+s+tn)=s
n | |
\sum | |
k=0 |
k\sigmak(r+tk)\sigman-k(s+t(n-k)).
When
n,m\inN
\sigman(m)
\begin{align}\left\{\begin{matrix}n\ m\end{matrix}\right\}&=(-1)n-m+1
n! | |
(m-1)! |
\sigman-m(-m) (whenm<0)\ \left[\begin{matrix}n\ m\end{matrix}\right]&=
n! | |
(m-1)! |
\sigman-m(n) (whenm>n),\end{align}
and their relations to the Bernoulli numbers given by
\begin{align}\sigman(m)&=
(-1)m+n-1 | |
m!(n-m)! |
\sum0\left[\begin{matrix}m\ m-k\end{matrix}\right]
Bn-k | |
n-k |
, n\geqm>0\ \sigman(m)&=-
Bn | |
n ⋅ n! |
, m=0.\end{align}
The article contains definitions and properties of special convolution polynomial families defined by special generating functions of the form
F(z)x
F(0)=1
l{B}t(z)=1+z
t | |
l{B} | |
t(z) |
B(n)
Fn(x):=[zn]F(z)x
n! ⋅ Fn(x)
zFn(x+tn) | |
(x+tn) |
=[zn]
x | |
l{F} | |
t(z) |
t\inC
l{F}t(z)
l{F}t(z)=F\left(x
t\right) | |
l{F} | |
t(z) |