Stieltjes constants explained

In mathematics, the Stieltjes constants are the numbers

\gammak

that occur in the Laurent series expansion of the Riemann zeta function:
\zeta(1+s)=1
s
infty
+\sum
n=0
(-1)n
n!

\gammansn.

The constant

\gamma0=\gamma=0.577...

is known as the Euler - Mascheroni constant.

Representations

The Stieltjes constants are given by the limit

\gamman=\limm\toinfty

m
\left\{\sum
k=1
(lnk)n
k

-

m(lnx)n
x
\int
1

dx\right\}=\limm

m
{\left\{\sum
k=1
(lnk)n
k

-

(lnm)n+1
n+1

\right\}}.

(In the case n = 0, the first summand requires evaluation of 00, which is taken to be 1.)

Cauchy's differentiation formula leads to the integral representation

\gamman=

(-1)nn!
2\pi
2\pi
\int
0

e-nix\zeta\left(eix+1\right)dx.

Various representations in terms of integrals and infinite series are given in works of Jensen, Franel, Hermite, Hardy, Ramanujan, Ainsworth, Howell, Coppo, Connon, Coffey, Choi, Blagouchine and some other authors.[1] [2] [3] [4] In particular, Jensen-Franel's integral formula, often erroneously attributed to Ainsworth and Howell, states that

\gamman=

1
2

\deltan,0+

1
i
infty
\int
0
dx\left\{
e2\pi-1
(ln(1-ix))n
1-ix

-

(ln(1+ix))n
1+ix

\right\},      n=0,1,2,\ldots

where δn,k is the Kronecker symbol (Kronecker delta). Among other formulae, we find

\gamman=-

\pi
2(n+1)
infty
\left(ln\left(1\pmix\right)\right)n+1
2
\cosh2\pix
\int
-infty

dx                   n=0,1,2,\ldots

\begin{array}{l} \displaystyle\gamma1=-\left[\gamma-

ln2
2

\right]ln2+

infty
i\int
0
dx\left\{
e\pi+1
ln(1-ix)
1-ix

-

ln(1+ix)
1+ix

\right\}\\[6mm] \displaystyle \gamma1=-\gamma2-

infty
\int\left[
0
1-
1-e-x
1
x

\right]e-xlnxdx \end{array}

see.[1] [5]

As concerns series representations, a famous series implying an integer part of a logarithm was given by Hardy in 1912[6]

\gamma1=

ln2
2
infty
\sum
k=2
(-1)k
k

\lfloorlog2{k}\rfloor \left(2log2{k}-\lfloorlog2{2k}\rfloor\right)

Israilov[7] gave semi-convergent series in terms of Bernoulli numbers

B2k

\gammam=

n
\sum
k=1
(lnk)m
k

-

(lnn)m+1
m+1

-

(lnn)m
2n

-

N-1
\sum
k=1
B2k\left[
(2k)!
(lnx)m
x
(2k-1)
\right]
x=n

-\theta

B2N\left[
(2N)!
(lnx)m
x
(2N-1)
\right]
x=n

,    0<\theta<1

Connon,[8] Blagouchine and Coppo[1] gave several series with the binomial coefficients

\begin{array}{l} \displaystyle \gammam=-

1
m+1
infty1
n+1
\sum
n=0
n
\sum
k=0

(-1)k\binom{n}{k}(ln(k+1))m+1\\[7mm] \displaystyle\gammam=-

1
m+1
infty1
n+2
\sum
n=0
n
\sum
k=0

(-1)k\binom{n}{k}

(ln(k+1))m+1
k+1

\\[7mm] \displaystyle

\gamma
m=-1
m+1
infty
\sum
n=0

Hn+1

n
\sum
k=0

(-1)k\binom{n}{k}(ln(k+2))m+1\\[7mm] \displaystyle\gammam=

infty\left|G
\sum
n+1

\right|

n (-1)
\sum
k=0

k\binom{n}{k}

(ln(k+1))m
k+1

\end{array}

where Gn are Gregory's coefficients, also known as reciprocal logarithmic numbers (G1=+1/2, G2=-1/12, G3=+1/24, G4=-19/720,...). More general series of the same nature include these examples[9]
\gamma
m=-(ln(1+a))m+1
m+1

+

infty
\sum
n=0

(-1)n\psin+1

n
(a) \sum
k=0

(-1)k\binom{n}{k}

(ln(k+1))m
k+1

,\Re(a)>-1

and
\gamma
m=-1
r(m+1)
r-1
\sum
l=0

(ln(1+a+l))m+1+

1
r
infty
\sum
n=0

(-1)nNn+1,r

n
(a) \sum
k=0

(-1)k\binom{n}{k}

(ln(k+1))m
k+1

,\Re(a)>-1,r=1,2,3,\ldots

or
\gamma{2}+a} \left\{
m=-1
\tfrac{1
(-1)m
m+1

\zeta(m+1)(0,1+a)-(-1)m\zeta(m)(0) -

infty
\sum
n=0

(-1)n\psin+2(a)

n
\sum
k=0

(-1)k\binom{n}{k}

(ln(k+1))m
k+1

\right\},\Re(a)>-1

where are the Bernoulli polynomials of the second kind and are the polynomials given by the generating equation
(1+z)a+m-(1+z)a
ln(1+z)
infty
=\sum
n=0

Nn,m(a)zn,    |z|<1,

respectively (note that).[10] Oloa and Tauraso[11] showed that series with harmonic numbers may lead to Stieltjes constants

\begin{array}{l} \displaystyle

infty
\sum
n=1
Hn-(\gamma+lnn)
n

= -\gamma1-

1
2
2+1
12
\gamma

\pi2\\[6mm] \displaystyle

infty
\sum
n=1
2
H-(\gamma+lnn)2
n
n

= -\gamma2-2\gamma\gamma1-

2
3
3+5
3
\gamma

\zeta(3) \end{array}

Blagouchine obtained slowly-convergent series involving unsigned Stirling numbers of the first kind

\left[{\atop}\right]

\gammam=

1
2

\deltam,0+

(-1)mm!
\pi
infty1
nn!
\sum
n=1
\lfloorn/2\rfloor
\sum
k=0
(-1)k\left[{2k+2\atopm+1
\right]

\left[{n\atop2k+1}\right]} {(2\pi)2k+1

}\,,\qquad m=0,1,2,...,as well as semi-convergent series with rational terms only

\gammam=

1
2

\deltam,0+(-1)m

N
m!\sum
k=1
\left[{2k\atopm+1
\right]

B2k

} + \theta\cdot\frac,\qquad 0<\theta<1,where m=0,1,2,... In particular, series for the first Stieltjes constant has a surprisingly simple form

\gamma1=-

1
2
N
\sum
k=1
B2kH2k-1
k

+\theta

B2N+2H2N+1
2N+2

,    0<\theta<1,

where Hn is the nth harmonic number.More complicated series for Stieltjes constants are given in works of Lehmer, Liang, Todd, Lavrik, Israilov, Stankus, Keiper, Nan-You, Williams, Coffey.[2] [3]

Bounds and asymptotic growth

The Stieltjes constants satisfy the bound

|\gamman|\leq \begin{cases} \displaystyle

2(n-1)!
\pin

,    &n=1,3,5,\ldots\\[3mm] \displaystyle

4(n-1)!
\pin

,    &n=2,4,6,\ldots\end{cases}

given by Berndt in 1972.[12] Better bounds in terms of elementary functions were obtained by Lavrik[13]

|\gamman|\leq

n!
2n+1

,    n=1,2,3,\ldots

by Israilov[7]

|\gamman|\leq

n!C(k)
(2k)n

,    n=1,2,3,\ldots

with k=1,2,... and C(1)=1/2, C(2)=7/12,..., by Nan-You and Williams[14]

|\gamman|\leq \begin{cases} \displaystyle

2(2n)!
nn+1(2\pi)n

,    &n=1,3,5,\ldots\\[4mm] \displaystyle

4(2n)!
nn+1(2\pi)n

,    &n=2,4,6,\ldots\end{cases}

by Blagouchine[15]
\begin{array}{ll} \displaystyle-|{B
m+1

|}{m+1}<\gammam<

(3m+8)|{B
m+3

|}{24}-

|{B
m+1

|}{m+1},&m=1,5,9,\ldots\\[12pt] \displaystyle

|Bm+1|
m+1

-

(3m+8)|Bm+3|
24

<\gammam<

|{B
m+1

|}{m+1},&m=3,7,11,\ldots\\[12pt] \displaystyle-

|{B
m+2

|}{2}<\gammam <

(m+3)(m+4)|{B
m+4

|}{48}-

|Bm+2|
2

,    &m=2,6,10,\ldots\\[12pt] \displaystyle

|{B
m+2

|}{2}-

(m+3)(m+4)|{B
m+4

|}{48} <\gammam<

|{B
m+2

|}{2},&m=4,8,12,\ldots\\ \end{array}

where Bn are Bernoulli numbers, and by Matsuoka[16] [17]

|\gamman|<10-4en,    n=5,6,7,\ldots

As concerns estimations resorting to non-elementary functions and solutions, Knessl, Coffey[18] and Fekih-Ahmed[19] obtained quite accurate results. For example, Knessl and Coffey give the following formula that approximates the Stieltjes constants relatively well for large n. If v is the unique solution of

2\pi\exp(v\tanv)=n

\cos(v)
v

with

0<v<\pi/2

, and if

u=v\tanv

, then

\gamman\sim

B
\sqrt{n
} e^ \cos(an+b)

where

A=

1
2

ln(u2+v2)-

u
u2+v2

B=

2\sqrt{2\pi
\sqrt{u

2+v2}}{[(u+1)2+v2]1/4

}

a=\tan-1\left(

v
u

\right)+

v
u2+v2

b=\tan-1\left(

v
u

\right)-

1\left(
2
v
u+1

\right).

Up to n = 100000, the Knessl-Coffey approximation correctly predicts the sign of γn with the single exception of n = 137.

In 2022 K. Maślanka[20] gave an asymptotic expression for the Stieltjes constants, which is both simpler and more accurate than those previously known. In particular, it reproduces with a relatively small error thetroublesome value for n = 137.

Namely, when

n>>1

\gamman\sim\sqrt{

2
\pi
} n! \mathrm \frac

where

sn

are the saddle points:

sn=

n+3
2
W\left(\pm
n+3
2
2\pii
\right)

W

is the Lambert function and

c

is a constant:

c=log(2\pi)+

\pi
2

i

Defining a complex "phase"

\varphin

\varphin\equiv

1
2

ln(8\pi)-n+(n+

1
2

)ln(n)+(sn-n-

1
2

)ln\left(sn\right)-

1
2

ln\left(n+sn\right)-(c+1)sn

we get a particularly simple expression in which both the rapidly increasingamplitude and the oscillations are clearly seen:

\gamman\simRe\left[

\varphin
e

\right]

Re\varphin
=e

\cos\left(Im\varphin\right)

Numerical values

The first few values are [21]

n approximate value of γn OEIS
0 +0.5772156649015328606065120900824024310421593359
1 -0.0728158454836767248605863758749013191377363383
2 -0.0096903631928723184845303860352125293590658061
3 +0.0020538344203033458661600465427533842857158044
4 +0.0023253700654673000574681701775260680009044694
5 +0.0007933238173010627017533348774444448307315394
6 -0.0002387693454301996098724218419080042777837151
7 -0.0005272895670577510460740975054788582819962534
8 -0.0003521233538030395096020521650012087417291805
9 -0.0000343947744180880481779146237982273906207895
10 +0.0002053328149090647946837222892370653029598537
100 -4.2534015717080269623144385197278358247028931053 × 1017
1000 -1.5709538442047449345494023425120825242380299554 × 10486
10000 -2.2104970567221060862971082857536501900234397174 × 106883
100000 +1.9919273063125410956582272431568589205211659777 × 1083432

For large n, the Stieltjes constants grow rapidly in absolute value, and change signs in a complex pattern.

Further information related to the numerical evaluation of Stieltjes constants may be found in works of Keiper,[22] Kreminski,[23] Plouffe,[24] Johansson[25] and Blagouchine. First, Johansson provided values of the Stieltjes constants up to n = 100000, accurate to over 10000 digits each (the numerical values can be retrieved from the LMFDB http://beta.lmfdb.org/riemann/stieltjes/. Later, Johansson and Blagouchine devised a particularly efficient algorithm for computing generalized Stieltjes constants (see below) for large and complex, which can be also used for ordinary Stieltjes constants. In particular, it allows one to compute to 1000 digits in a minute for any up to .

Generalized Stieltjes constants

General information

More generally, one can define Stieltjes constants γn(a) that occur in the Laurent series expansion of the Hurwitz zeta function:

\zeta(s,a)=1
s-1
infty
+\sum
n=0
(-1)n
n!

\gamman(a)(s-1)n.

Here a is a complex number with Re(a)>0. Since the Hurwitz zeta function is a generalization of the Riemann zeta function, we have γn(1)=γn The zeroth constant is simply the digamma-function γ0(a)=-Ψ(a), while other constants are not known to be reducible to any elementary or classical function of analysis. Nevertheless, there are numerous representations for them. For example, there exists the following asymptotic representation

\gamman(a)=\limm\toinfty

m
\left\{ \sum
k=0
(ln(k+a))n
k+a

-

(ln(m+a))n+1
n+1

\right\},    \begin{array}{l} n=0,1,2,\ldots\\[1mm] a ≠ 0,-1,-2,\ldots \end{array}

due to Berndt and Wilton. The analog of Jensen-Franel's formula for the generalized Stieltjes constant is the Hermite formula

\gamman(a)=\left[

1-
2a
ln{a
} \right](\ln a)^n-i\int_0^\infty \frac \left\, \qquad\beginn=0, 1, 2,\ldots \\[1mm]\Re(a)>0\endSimilar representations are given by the following formulas:[26]

\gamman(a)=-

(ln(a-12))
n+1
n+1
infty
+i\int
0
dx\left\{
e2\pi+1
(ln(a-12-ix))
n
a-12-ix

-

(ln(a-12+ix))
n
a-12+ix

\right\},    \begin{array}{l} n=0,1,2,\ldots\\[1mm] \Re(a)>

12 \end{array}
and

\gamman(a)=-

\pi
2(n+1)
infty
\int
0
(ln(a-12-ix))+
(ln(a-12+ix))
n+1
n+1
(\cosh(\pix))2

dx,    \begin{array}{l} n=0,1,2,\ldots\\[1mm] \Re(a)>

12 \end{array}

Generalized Stieltjes constants satisfy the following recurrence relation

\gamman(a+1)=\gamman(a)-

(lna)n
a

,    \begin{array}{l} n=0,1,2,\ldots\\[1mm] a ≠ 0,-1,-2,\ldots \end{array}

as well as the multiplication theorem
n-1
\sum
l=0

\gammap\left(a+

l
n

\right)= (-1)pn\left[

lnn
p+1

-\Psi(an)\right](lnn)p+

p-1
n\sum
r=0

(-1)r\binom{p}{r}\gammap-r(an)(lnn)r,       n=2,3,4,\ldots

where

\binom{p}{r}

denotes the binomial coefficient (see[27] and, pp. 101–102).

First generalized Stieltjes constant

The first generalized Stieltjes constant has a number of remarkable properties.

\gamma1l(

m
n

r)-\gamma1l(1-

m
n

r)

n-1
=2\pi\sum\sin
l=1
2\piml
n

⋅ ln\Gammal(

l
n

r) -\pi(\gamma+ln2\pin)\cot

m\pi
n

where m and n are positive integers such that m<n.This formula has been long-time attributed to Almkvist and Meurman who derived it in 1990s.[28] However, it was recently reported that this identity, albeit in a slightly different form, was first obtained by Carl Malmsten in 1846.[29] [30]

\begin{array}{ll} \displaystyle\gamma1l(

r
m

r) =&\displaystyle \gamma1+\gamma2+\gammaln2\pim+ln2\pi ⋅ ln{m}+

1
2

(lnm)2 +(\gamma+ln2\pim)\Psi\left(

r
m

\right)\\[5mm] \displaystyle&

m-1
\displaystyle    +\pi\sum\sin
l=1
2\pirl
m

⋅ ln\Gammal(

l
m

r)+

m-1
\sum\cos
l=1
2\pirl\zeta''\left(0,
m
l
m

\right)\end{array},      r=1,2,3,\ldots,m-1.

see Blagouchine.[31] An alternative proof was later proposed by Coffey[32] and several other authors.

\begin{array}{ll} \displaystyle

m-1
\sum
r=0

\gamma1\left(a+

r
m

\right)= mln{m}\Psi(am)-

m
2

(lnm)2+m\gamma1(am),   

m-1
a\inC\\[6mm] \displaystyle \sum
r=1
\gamma
1\left(r
m

\right)= (m-1)\gamma1-m\gammaln{m}-

m
2

(lnm)2

2m-1
\\[6mm] \displaystyle \sum
r=1

(-1)r\gamma1l(

r
2m

r) =-\gamma1+m(2\gamma+ln2+2ln

2m-1
m)ln2\\[6mm] \displaystyle \sum
r=0

(-1)r

\gamma
1l(2r+1
4m

r) =m\left\{4\piln\Gammal(

1
4

r)-\pi(4ln2+3ln\pi+lnm+\gamma

m-1
)\right\}\\[6mm] \displaystyle \sum
r=1

\gamma1l(

r
m

r) \cos\dfrac{2\pirk}{m}=-\gamma1+m(\gamma+ln2\pim) ln\left(2\sin

k\pi
m

\right)+

m
2

\left\{\zeta''\left(0,

k
m

\right)+\zeta''\left(0,1-

k
m

\right)\right\},    k=1,2,\ldots,m-1

m-1
\\[6mm] \displaystyle \sum
r=1
\gamma
1l(r
m

r) \sin\dfrac{2\pirk}{m}=

\pi
2

(\gamma+ln2\pim)(2k-m)-

\pim
2

\left\{ln\pi-ln\sin

k\pi
m

\right\}+m\piln\Gammal(

k
m

r),    k=1,2,\ldots,m-1

m-1
\\[6mm] \displaystyle \sum
r=1

\gamma1l(

rr)\cot
m
\pir
m

=\displaystyle

\pi
6

\{(1-m)(m-2)\gamma+2(m2-1)ln2\pi-

m-1
(m
l=1

l ⋅ ln\Gamma\left(

l
m

\right)

m-1
\\[6mm] \displaystyle \sum
r=1
r
m

\gamma1l(

r
m

r)=

1
2

\left\{(m-1)\gamma1-m\gammaln{m}-

m
2

(lnm)2\right\} -

\pi
2m

(\gamma+ln2\pim)

m-1
\sum
l=1

l\cot

\pil-
m
\pi
2
m-1
\sum\cot
l=1
\pil ⋅ ln\Gammal(
m
l
m

r)\end{array}

For more details and further summation formulae, see.
\gamma
1\left(1
2

\right)=-2\gammaln2-(ln2)2+\gamma1=-1.353459680\ldots

At points 1/4, 3/4 and 1/3, values of first generalized Stieltjes constants were independently obtained by Connon[33] and Blagouchine[34]
\begin{array}{l} \displaystyle \gamma
1\left(1
4

\right)=2\piln\Gamma\left(

1
4

\right)-

3\pi
2

ln\pi-

7
2

(ln2)2-(3\gamma+2\pi)ln2-

\gamma\pi
2

+\gamma1=-5.518076350\ldots

\\[6mm] \displaystyle \gamma
1\left(3
4

\right)=-2\piln\Gamma\left(

1
4

\right)+

3\pi
2

ln\pi-

7
2

(ln2)2-(3\gamma-2\pi)ln2+

\gamma\pi
2

+\gamma1=-0.3912989024\ldots

\\[6mm] \displaystyle \gamma
1\left(1
3

\right)=-

3\gamma
2

ln3-

3
4

(ln3)2+

\pi
4\sqrt{3
}\left\+ \gamma_1 = -3.259557515\ldots\endAt points 2/3, 1/6 and 5/6
\begin{array}{l} \displaystyle \gamma
1\left(2
3

\right)=-

3\gamma
2

ln3-

3
4

(ln3)2-

\pi
4\sqrt{3
}\left\ + \gamma_1 = -0.5989062842\ldots \\[6mm]\displaystyle\gamma_1\left(\frac \right) = -\frac\ln3 - \frac(\ln 3)^2- (\ln 2)^2 - (3\ln3+2\gamma)\ln2 + \frac\ln\Gamma\left(\frac \right) \\[5mm]\displaystyle\qquad\qquad\quad- \frac\left\ + \gamma_1 = -10.74258252\ldots\\[6mm]\displaystyle\gamma_1\left(\frac \right) = -\frac\ln 3 - \frac(\ln 3)^2 - (\ln 2)^2 - (3\ln3+2\gamma)\ln2 - \frac\ln\Gamma\left(\frac \right) \\[6mm]\displaystyle\qquad\qquad\quad+ \frac\left\+ \gamma_1 = -0.2461690038\ldots\endThese values were calculated by Blagouchine. To the same author are also due

\begin{array}{ll} \displaystyle

\gamma
1l(1
5

r)=&\displaystyle \gamma1+

\sqrt{5
}\left\+ \frac \ln\Gamma \biggl(\frac \biggr)\\[5mm]& \displaystyle + \frac \ln\Gamma \biggl(\frac \biggr)+\left\\cdot\gamma \\[5mm]& \displaystyle - \frac\left\\cdot\ln\big(1+\sqrt) +\frac(\ln 2)^2 + \frac(\ln 5)^2 \\[5mm]& \displaystyle +\frac\ln2\cdot\ln5 + \frac\ln2\cdot\ln\pi+\frac\ln5\cdot\ln\pi- \frac\ln2\\[5mm]& \displaystyle - \frac\ln5- \frac\ln\pi\\[5mm]& \displaystyle = -8.030205511\ldots \\[6mm]\displaystyle \gamma_1\biggl(\frac \biggr) =& \displaystyle\gamma_1 + \sqrt\left\+ 2\pi\sqrt\ln\Gamma \biggl(\frac \biggr)-\pi \sqrt\big(1-\sqrt2\big)\ln\Gamma \biggl(\frac \biggr)\\[5mm]& \displaystyle -\left\\cdot\gamma - \frac\big(\pi+8\ln2+2\ln\pi\big)\cdot\ln\big(1+\sqrt) \\[5mm]& \displaystyle - \frac(\ln 2)^2 + \frac\ln2\cdot\ln\pi -\frac\ln2 -\frac\ln\pi\\[5mm]& \displaystyle = -16.64171976\ldots \\[6mm]\displaystyle \gamma_1\biggl(\frac \biggr) =& \displaystyle\gamma_1 + \sqrt\left\+ 4\pi\ln\Gamma \biggl(\frac \biggr)+3\pi \sqrt\ln\Gamma \biggl(\frac \biggr)\\[5mm]& \displaystyle -\left\\cdot\gamma \\[5mm]& \displaystyle - 2\sqrt3\big(3\ln2+\ln3 +\ln\pi\big)\cdot\ln\big(1+\sqrt) - \frac(\ln 2)^2 - \frac(\ln 3)^2 \\[5mm]& \displaystyle + \frac\ln3\cdot\ln2 + \sqrt3\ln2\cdot\ln\pi -\frac\ln2 \\[5mm]& \displaystyle +\frac\ln3 -\pi\sqrt3(2+\sqrt3)\ln\pi= -29.84287823\ldots\end

Second generalized Stieltjes constant

The second generalized Stieltjes constant is much less studied than the first constant. Similarly to the first generalized Stieltjes constant, the second generalized Stieltjes constant at rational argument may be evaluated via the following formula

\begin{array}{rl} \displaystyle \gamma2l(

r
m

r)= \gamma2+

2
3
m-1
\sum\cos
l=1
2\pirl\zeta'''\left(0,
m
l
m

\right)- 2(\gamma+ln2\pim)

m-1
\sum\cos
l=1
2\pirl\zeta''\left(0,
m
l
m

\right)\\[6mm] \displaystyle +

m-1
\pi\sum\sin
l=1
2\pirl\zeta''\left(0,
m
l
m

\right)-2\pi(\gamma+ln2\pi

m-1
m) \sum\sin
l=1
2\pirl
m

⋅ ln\Gammal(

l
m

r)-2\gamma1ln{m}\\[6mm] \displaystyle -\gamma3-\left[(\gamma+ln2\pi

2-\pi2
12
m)\right] \Psil(
r
m

r)+

\pi3\cot
12
\pir
m

-\gamma2ln(4\pi2m3)+

\pi2
12

(\gamma+ln{m})\\[6mm] \displaystyle -\gamma((ln2\pi)2+4lnm ⋅ ln2\pi+2(lnm)2) -\left\{(ln2\pi)2+2ln2\pilnm+

2
3

(lnm)2\right\}lnm \end{array},      r=1,2,3,\ldots,m-1.

see Blagouchine.An equivalent result was later obtained by Coffey by another method.

Notes and References

  1. Marc-Antoine. Coppo. Nouvelles expressions des constantes de Stieltjes. Expositiones Mathematicae. 17. 349–358. 1999.
  2. Mark W.. Coffey. Series representations for the Stieltjes constants. 2009. math-ph. 0905.1111.
  3. 10.1016/j.jnt.2010.01.003. Mark W.. Coffey. Addison-type series representation for the Stieltjes constants. J. Number Theory. 130. 2049–2064. 2010. 9. free.
  4. Junesang. Choi. Certain integral representations of Stieltjes constants. Journal of Inequalities and Applications. 2013. 532. 1–10.
  5. Web site: A couple of definite integrals related to Stieltjes constants . .
  6. G. H.. Hardy. Note on Dr. Vacca's series for γ. Q. J. Pure Appl. Math.. 43. 215–216. 2012.
  7. M. I.. Israilov. On the Laurent decomposition of Riemann's zeta function [in Russian]. Trudy Mat. Inst. Akad. Nauk. SSSR. 158. 98–103. 1981.
  8. Donal F. Connon Some applications of the Stieltjes constants, arXiv:0901.2083
  9. Blagouchine. Iaroslav V.. Three notes on Ser's and Hasse's representations for the zeta-functions . INTEGERS: The Electronic Journal of Combinatorial Number Theory . 2018 . 18A.
    1. A3
    . 1–45. 1606.02044.
  10. Actually Blagouchine gives more general formulas, which are valid for the generalized Stieltjes constants as well.
  11. Web site: A closed form for the series ... . .
  12. Bruce C. Berndt. On the Hurwitz Zeta-function. Rocky Mountain Journal of Mathematics, vol. 2, no. 1, pp. 151-157, 1972.
  13. A. F. Lavrik. On the main term of the divisor's problem and the power series of the Riemann's zeta function in a neighbourhood of its pole (in Russian). Trudy Mat. Inst. Akad. Nauk. SSSR, vol. 142, pp. 165-173, 1976.
  14. Z. Nan-You and K. S. Williams. Some results on the generalized Stieltjes constants. Analysis, vol. 14, pp. 147-162, 1994.
  15. Iaroslav V.. Blagouchine. Expansions of generalized Euler's constants into the series of polynomials in -2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory . 158. 365–396. 2016. 10.1016/j.jnt.2015.06.012 . 1501.00740. Corrigendum: vol. 173, pp. 631-632, 2017.
  16. Y. Matsuoka. Generalized Euler constants associated with the Riemann zeta function. Number Theory and Combinatorics: Japan 1984, World Scientific, Singapore, pp. 279-295, 1985
  17. Y. Matsuoka. On the power series coefficients of the Riemann zeta function. Tokyo Journal of Mathematics, vol. 12, no. 1, pp. 49-58, 1989.
  18. Charles Knessl and Mark W. Coffey. An effective asymptotic formula for the Stieltjes constants. Math. Comp., vol. 80, no. 273, pp. 379-386, 2011.
  19. Lazhar Fekih-Ahmed. A New Effective Asymptotic Formula for the Stieltjes Constants, arXiv:1407.5567
  20. Krzysztof Maślanka. Asymptotic Properties of Stieltjes Constants. Computational Methods in Science and Technology, vol. 28 (2022), p.123-131; https://arxiv.org/abs/2210.07244v1
  21. B. K.. Choudhury . 1995. 10.1098/rspa.1995.0096. The Riemann zeta-function and its derivatives. Proc. R. Soc. A. 450 . 1940. 477–499. 1995RSPSA.450..477C . 124034712 .
  22. J.B.. Keiper. Power series expansions of Riemann ζ-function. Math. Comp.. 58. 198. 765–773. 1992. 10.1090/S0025-5718-1992-1122072-5. 1992MaCom..58..765K. free.
  23. Rick. Kreminski. Newton-Cotes integration for approximating Stieltjes generalized Euler constants. Math. Comp.. 72. 243. 1379–1397. 2003. 10.1090/S0025-5718-02-01483-7. 2003MaCom..72.1379K. free.
  24. http://www.plouffe.fr/simon/constants/stieltjesgamma.txt Simon Plouffe. Stieltjes Constants, from 0 to 78, 256 digits each
  25. Fredrik . Johansson. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. 1309.2877. Num. Alg.. 2015. 69. 2. 253–570. 10.1007/s11075-014-9893-1. 10344040.
  26. Johansson . Fredrik. Blagouchine. Iaroslav. Computing Stieltjes constants using complex integration . . 2019 . 88. 318. 1829–1850. 1804.01679 . 10.1090/mcom/3401. 4619883.
  27. Donal F.. Connon. New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. 2009. math.CA. 0903.4539.
  28. V. Adamchik. A class of logarithmic integrals. Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 1-8, 1997.
  29. Iaroslav V. . Blagouchine . A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations . Journal of Number Theory . 148 . 537–592 . 10.1016/j.jnt.2014.08.009 . 1401.3724 . 2015 . And vol. 151, pp. 276-277, 2015.
  30. Web site: Evaluation of a particular integral . .
  31. Web site: Definite integral . .
  32. Mark W. Coffey Functional equations for the Stieltjes constants,
  33. Donal F. Connon The difference between two Stieltjes constants, arXiv:0906.0277
  34. https://link.springer.com/article/10.1007/s11139-013-9528-5 Iaroslav V. Blagouchine Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results. The Ramanujan Journal, vol. 35, no. 1, pp. 21-110, 2014. Erratum-Addendum: vol. 42, pp. 777-781, 2017.