The Stewart–Walker lemma provides necessary and sufficient conditions for the linear perturbation of a tensor field to be gauge-invariant.
\Delta\deltaT=0
1.
T0=0
2.
T0
3.
T0
b | |
\delta | |
a |
A 1-parameter family of manifolds denoted by
l{M}\epsilon
l{M}0=l{M}4
gik=ηik+\epsilonhik
l{N}
\gamma
l{N}
X
l{M}\epsilon
X
ht
l{N}\tol{N}
p0\inl{M}0
p\epsilon\inl{M}\epsilon
h\epsilon(p0)
* | |
h | |
\epsilon |
T\epsilon\inl{M}\epsilon
l{M}0
* | |
h | |
\epsilon |
(T\epsilon)=T0+\epsilon
* | |
h | |
\epsilon |
(l{L}XT\epsilon)+O(\epsilon2)
\deltaT=\epsilon
* | |
h | |
\epsilon |
(l{L}XT\epsilon)\equiv\epsilon(l{L}XT\epsilon)0
T
X
\Delta\deltaT=\epsilon(l{L}XT\epsilon)0-\epsilon(l{L}YT\epsilon)0=\epsilon(l{L}X-YT\epsilon)0
Xa=(\xi\mu,1)
Ya=(0,1)
Xa-Ya=(\xi\mu,0)
l{M}\epsilon
\Delta\deltaT=\epsilonl{L}\xiT0.
The only three possible ways this can be satisfied are those of the lemma.