Steven Weinberg Explained

Birth Date:3 May 1933
Birth Place:New York City, U.S.
Death Place:Austin, Texas, U.S.
Resting Place:Texas State Cemetery
Fields:Theoretical physics
Thesis Title:The role of strong interactions in decay processes
Thesis Url:http://www.worldcat.org/oclc/81937779
Thesis Year:1957
Doctoral Advisor:Sam Treiman
Doctoral Students:Fernando Quevedo
Children:1

Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interaction between elementary particles.

He held the Josey Regental Chair in Science at the University of Texas at Austin, where he was a member of the Physics and Astronomy Departments. His research on elementary particles and physical cosmology was honored with numerous prizes and awards, including the 1979 Nobel Prize in physics and the 1991 National Medal of Science. In 2004, he received the Benjamin Franklin Medal of the American Philosophical Society, with a citation that said he was "considered by many to be the preeminent theoretical physicist alive in the world today." He was elected to the U.S. National Academy of Sciences, Britain's Royal Society, the American Philosophical Society, and the American Academy of Arts and Sciences.

Weinberg's articles on various subjects occasionally appeared in The New York Review of Books and other periodicals. He served as a consultant at the U.S. Arms Control and Disarmament Agency, president of the Philosophical Society of Texas, and member of the Board of Editors of Daedalus magazine, the Council of Scholars of the Library of Congress, the JASON group of defense consultants, and many other boards and committees.[1] [2]

Early life

Steven Weinberg was born in 1933 in New York City.[3] His parents were Jewish[4] immigrants;[5] his father, Frederick, worked as a court stenographer, while his mother, Eva (Israel), was a housewife.[6] Becoming interested in science at age 16 through a chemistry set handed down by a cousin, he graduated from Bronx High School of Science in 1950.[7] He was in the same graduating class as Sheldon Glashow,[6] whose research, independent of Weinberg's, resulted in their (and Abdus Salam's) sharing the 1979 Nobel in physics.[8]

Weinberg received his bachelor's degree from Cornell University in 1954. There he resided at the Telluride House. He then went to the Niels Bohr Institute in Copenhagen, where he started his graduate studies and research. After one year, Weinberg moved to Princeton University, where he earned his Ph.D. in physics in 1957, completing his dissertation, "The role of strong interactions in decay processes", under the supervision of Sam Treiman.[9]

Career and research

After completing his Ph.D., Weinberg worked as a postdoctoral researcher at Columbia University (1957–59) and University of California, Berkeley (1959) and then was promoted to faculty at Berkeley (1960–66). He did research in a variety of topics of particle physics, such as the high energy behavior of quantum field theory, symmetry breaking,[10] pion scattering, infrared photons and quantum gravity (soft graviton theorem).[11] It was also during this time that he developed the approach to quantum field theory described in the first chapters of his book The Quantum Theory of Fields[12] and started to write his textbook Gravitation and Cosmology, having taken up an interest in general relativity after the discovery of cosmic microwave background radiation.[13] He was also appointed the senior scientist at the Smithsonian Astrophysical Observatory.[13] The Quantum Theory of Fields spanned three volumes and over 1,500 pages, and is often regarded as the leading book in the field.[13]

In 1966, Weinberg left Berkeley and accepted a lecturer position at Harvard. In 1967 he was a visiting professor at MIT. It was in that year at MIT that Weinberg proposed his model of unification of electromagnetism and nuclear weak forces (such as those involved in beta-decay and kaon-decay),[14] with the masses of the force-carriers of the weak part of the interaction being explained by spontaneous symmetry breaking. One of its fundamental aspects was the prediction of the existence of the Higgs boson. Weinberg's model, now known as the electroweak unification theory, had the same symmetry structure as that proposed by Glashow in 1961: both included the then-unknown weak interaction mechanism between leptons, known as neutral current and mediated by the Z boson. The 1973 experimental discovery of weak neutral currents[15] (mediated by this Z boson) was one verification of the electroweak unification. The paper by Weinberg in which he presented this theory is one of the most cited works ever in high-energy physics.[16]

After his 1967 seminal work on the unification of weak and electromagnetic interactions, Weinberg continued his work in many aspects of particle physics, quantum field theory, gravity, supersymmetry, superstrings and cosmology. In the years after 1967, the full Standard Model of elementary particle theory was developed through the work of many contributors. In it, the weak and electromagnetic interactions already unified by the work of Weinberg, Salam and Glashow, are made consistent with a theory of the strong interactions between quarks, in one overarching theory. In 1973, Weinberg proposed a modification of the Standard Model that did not contain that model's fundamental Higgs boson. Also during the 1970s, he proposed a theory later known as technicolor, in which new strong interactions resolve the hierarchy problem.[17] [18] [19]

Weinberg became Eugene Higgins Professor of Physics at Harvard University in 1973, a post he held until 1983.[8] In 1979 he pioneered the modern view on the renormalization aspect of quantum field theory that considers all quantum field theories effective field theories and changed the viewpoint of previous work (including his own in his 1967 paper) that a sensible quantum field theory must be renormalizable.[20] This approach allowed the development of effective theory of quantum gravity,[21] low energy QCD, heavy quark effective field theory and other developments, and is a topic of considerable interest in current research.[22]

In 1979, some six years after the experimental discovery of the neutral currents—i.e. the discovery of the inferred existence of the Z boson—but after the 1978 experimental discovery of the theory's predicted amount of parity violation due to Z bosons' mixing with electromagnetic interactions,[23] Weinberg was awarded the Nobel Prize in physics with Glashow and Salam, who had independently proposed a theory of electroweak unification based on spontaneous symmetry breaking.

In 1982 Weinberg moved to the University of Texas at Austin as the Jack S. Josey-Welch Foundation Regents Chair in Science, and started a theoretical physics group at the university that now has eight full professors and is one of the leading research groups in the field in the U.S.

Weinberg is frequently listed among the top scientists with the highest research effect indices, such as the h-index and the creativity index.[24] The theoretical physicist Peter Woit called Weinberg "arguably the dominant figure in theoretical particle physics during its period of great success from the late sixties to the early eighties", calling his contribution to electroweak unification "to this day at the center of the Standard Model, our best understanding of fundamental physics".[25] Science News named him along with fellow theorists Murray Gell-Mann and Richard Feynman the leading physicists of the era, commenting, "Among his peers, Weinberg was one of the most respected figures in all of physics or perhaps all of science".[26] Sean Carroll called Weinberg one of the “best physicists we had; one of the best thinkers of any variety” who “exhibited extraordinary verve and clarity of thought through the whole stretch of a long and productive life”,[27] while John Preskill called him "one of the most accomplished scientists of our age, and a particularly eloquent spokesperson for the scientific worldview". Brian Greene said that Weinberg had an “astounding ability to see into the deep workings of nature” that “profoundly shaped our understanding of the universe". Upon the awarding of the Breakthrough Prize in 2020, one of the founders of the prizes, Yuri Milner, called Weinberg a “key architect” of “one of the most successful physical theories ever”, while string theorist Juan Maldacena, the chair of the selection committee, said, “Steven Weinberg has developed many of the key theoretical tools that we use for the description of nature at a fundamental level".[28]

Other contributions

Besides his scientific research, Weinberg was a public spokesman for science, testifying before Congress in support of the Superconducting Super Collider, writing articles for The New York Review of Books,[29] and giving various lectures on the larger meaning of science. His books on science written for the public combine the typical scientific popularization with what is traditionally considered history and philosophy of science and atheism. His first popular science book, (1977), described the start of the universe with the Big Bang and enunciated a case for its expansion.[30]

Although still teaching physics, in later years he turned his hand to the history of science, efforts that culminated in To Explain the World: The Discovery of Modern Science (2015).[31] A hostile review[32] in the Wall Street Journal by Steven Shapin attracted a number of commentaries,[33] a response by Weinberg,[31] and an exchange of views between Weinberg and Arthur Silverstein in the NYRB in February 2016.[34]

In 2016, Weinberg became a default leader for faculty and students opposed to a new law allowing the carrying of concealed guns in UT classrooms. He announced that he would prohibit guns in his classes, and said he would stand by his decision to violate university regulations in this matter even if faced with a lawsuit.[35] Weinberg never retired and taught at UT until his death.[13]

Personal life and archive

In 1954 Weinberg married legal scholar Louise Goldwasser and they had a daughter, Elizabeth.[7]

Weinberg died on July 23, 2021, at age 88 at a hospital in Austin, where he had been undergoing treatment for several weeks.[36] [37]

Weinberg's papers were donated to the Harry Ransom Center at the University of Texas.[38]

Worldview

Weinberg identified as a liberal.[39]

Views on religion

Weinberg was an atheist.[40] Before he was an advocate of the Big Bang theory, Weinberg said: "The steady-state theory is philosophically the most attractive theory because it least resembles the account given in Genesis."[41]

Views on Israel

Weinberg was known for his support of Israel, which he characterized as "the 'most exposed salient' in a war between liberal democracies and Muslim theocracies."[42] He wrote the 1997 essay "Zionism and Its Adversaries" on the issue.[43]

In the 2000s, Weinberg canceled trips to universities in the United Kingdom because of the British boycotts of Israel. At the time, he said: "Given the history of the attacks on Israel and the oppressiveness and aggressiveness of other countries in the Middle East and elsewhere, boycotting Israel indicated a moral blindness for which it is hard to find any explanation other than antisemitism."[44]

Honors and awards

Selected publications

A list of Weinberg's publications can be found on arXiv[58] and Scopus.

Bibliography: books authored / coauthored

Scholarly articles

Popular articles

See also

External links

Notes and References

  1. Web site: Oral Histories . American Institute of Physics.
  2. Web site: Leslie, J, "Never-ending universe", a review in the Times Literary Supplement of Weinberg's 2015 book To explain the World.. May 13, 2015. April 30, 2016. https://web.archive.org/web/20160430100940/http://www.the-tls.co.uk/tls/public/article1552675.ece. dead.
  3. Web site: The Nobel Prize in Physics 1979. July 27, 2021. NobelPrize.org. en-US.
  4. Web site: Three Scientists Win Nobel Prize. Jewish Telegraphic Agency . October 16, 1979.
  5. Web site: Muster Mark's Quarks. dead. https://web.archive.org/web/20140725212618/http://www.infogeist.dk/html/egaagymnasium/infogeist-eg12i-fy/eg11iphysicsc/topic_1-8.html. July 25, 2014.
  6. Web site: steven Weinberg 1933– . PBS . 1998 . July 26, 2021.
  7. Web site: Steven Weinberg – Biographical . nobelprize.org . January 25, 2016 .
  8. Web site: Steven Weinberg . . July 26, 2021.
  9. Book: Weinberg, Steven. The role of strong interactions in decay processes. June 16, 1957. catalog.princeton.edu.
  10. Web site: From BCS to the LHC – CERN Courier. January 21, 2008.
  11. A partial list of this work is: Weinberg, S.. Phys. Rev.. 118. 838–849. 1960. 10.1103/PhysRev.118.838. High-Energy Behavior in Quantum Field Theory. 3. 1960PhRv..118..838W . ; Weinberg, S.. Phys. Rev.. 127. 965–970. 1962. 10.1103/PhysRev.127.965. Broken Symmetries. Salam. Abdus. Weinberg. Steven. 3. 1962PhRv..127..965G . ; Weinberg, S.. Phys. Rev. Lett.. 17. 616–621. 1966. 10.1103/PhysRevLett.17.616. Pion Scattering Lengths. 11. 1966PhRvL..17..616W . ; Weinberg, S.. Phys. Rev.. 140. B516–B524. 1965. 10.1103/PhysRev.140.B516. Infrared Photons and Gravitons. 2B. 1965PhRv..140..516W .
  12. Weinberg, S.. Phys. Rev.. 133. B1318–B1332. 1964. 10.1103/PhysRev.133.B1318. Feynman Rules for Any spin. 5B. 1964PhRv..133.1318W .
    Weinberg, S.. Phys. Rev.. 134. B882–B896. 1964. 10.1103/PhysRev.134.B882. Feynman Rules for Any spin. II. Massless Particles. 4B. 1964PhRv..134..882W . ; Weinberg, S.. Phys. Rev.. 181. 1893–1899. 1969. 10.1103/PhysRev.181.1893. Feynman Rules for Any spin. III. 5. 1969PhRv..181.1893W .
  13. Web site: Steven Weinberg, Groundbreaking Nobelist in Physics, Dies at 88 . McClain, Dylan Loeb . . July 26, 2021 . July 26, 2021.
  14. Weinberg, S.. Phys. Rev. Lett.. 19. 1264–1266. A Model of Leptons. https://web.archive.org/web/20120112142352/http://astrophysics.fic.uni.lodz.pl/100yrs/pdf/12/066.pdf. dead. January 12, 2012. 1967. 10.1103/PhysRevLett.19.1264. 21. 1967PhRvL..19.1264W.
  15. Haidt, D. . 2004 . The discovery of the weak neutral currents . CERN Courier. http://cerncourier.com/cws/article/cern/29168
  16. [INSPIRE-HEP]
  17. Weinberg, S.. Phys. Rev. D. 13. 974–996. 1976. 10.1103/PhysRevD.13.974. Implications of dynamical symmetry breaking. 4. 1976PhRvD..13..974W .
  18. Weinberg, S. . Steven Weinberg . Susskind, L. . Implications of dynamical symmetry breaking: An addendum . Physical Review . D19 . 1979 . 4 . 1277–1280 . 10.1103/PhysRevD.19.1277 . 1979PhRvD..19.1277W .
  19. Susskind, Leonard . Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory . Physical Review . D20 . 1979 . 10 . 2619–2625 . 10.1103/PhysRevD.20.2619 . 1979PhRvD..20.2619S. 1446928 . 17294645 .
  20. Weinberg, S.. Physica. 10.1016/0378-4371(79)90223-1. 327–340. 1979. Phenomenological Lagrangians. 96. 1–2. 1979PhyA...96..327W .
  21. Donoghue, J. F. . Phys. Rev. D. 50. 3874–3888. 1994. 10.1103/PhysRevD.50.3874. 10018030. General relativity as an effective field theory: The leading quantum corrections. 6. gr-qc/9405057 . 1994PhRvD..50.3874D . 14352660.
  22. Web site: Effective Field Theories, Reductionism and Scientific Explanation. Hartmann, Stephan . July 26, 2021.
  23. Charles Y. Prescott . Parity violation in inelastic scattering of polarized electrons . 10.1063/1.31766 . AIP Conference Proceedings . 51 . 202 . American Institute of Physics . Sixth Trieste Conference on Particle Physics . Trieste, Italy . June 30, 1978.
  24. In 2006 Weinberg had the second-highest creativity index among physicists World's most creative physicist revealed. physicsworld.com (June 17, 2006).
  25. Web site: Steven Weinberg 1933–2021 . July 24, 2021. July 25, 2021. Woit, Peter.
  26. Web site: With Steven Weinberg's death, physics loses a titan . Siegfried, Tom . July 24, 2021 . July 26, 2021.
  27. Web site: US Nobel-prize-winning physicist Steven Weinberg dies aged 88 . Banks, Michael . July 26, 2021 . July 26, 2021.
  28. Web site: UT's Steven Weinberg wins $3M Special Breakthrough Prize in Fundamental Physics. Mekelburg, Madlin . September 11, 2020 . July 26, 2020 . Austin American-Statesman.
  29. http://www.nybooks.com/authors/201 Articles by Steven Weinberg
  30. Web site: Steven Weinberg, Nobel Prize-winning physicist, has died. ghose, Tia . Live Science. July 25, 2021 . July 26, 2021.
  31. Eye on the Present—The Whig History of Science. Weinberg. Steven . The New York Review of Books. February 9, 2016. 62 . 20 . 82, 84 . 2015.
  32. Web site: Shapin . Stephen . February 13, 2015 . Why Scientists Shouldn't Write History . The Wall Street Journal . February 11, 2016 .
  33. Web site: Bouterse . Jeroen . May 31, 2015 . Weinberg, Whiggism, and the World in History of Science . Shells and Pebbles . February 11, 2016 .
  34. Silverstein . Arthur . Weinberg . Steven . 2016 . The Whig History of Science: An Exchange . The New York Review of Books . 63 . 3 . February 11, 2016 .
  35. Web site: Nobel Laureate Becomes Reluctant Anti-Gun Leader, by Madlin Mekelburg. The Texas Tribune. February 9, 2016. Madlin. Mekelburg. January 26, 2016.
  36. Web site: UT Austin Mourns Death of World-Renowned Physicist Steven Weinberg. July 24, 2021 . July 24, 2021. University of Texas at Austin. en.
  37. Web site: July 26, 2021. Steven Weinberg 1933–2021. July 31, 2021. CERN Courier. en-GB.
  38. https://norman.hrc.utexas.edu/fasearch/findingAid.cfm?eadid=01539 'Steven Weinberg: An Inventory of His Papers at the Harry Ransom Center' (Website UTexas)
  39. Book: Weinberg, Steven . Facing Up: Science and Its Cultural Adversaries . 2001 . Zionism and Its Adversaries . 181–183 . Harvard University Press . 0-674-01120-1 .
  40. Weinberg . Steven . September 25, 2008. Without God. The New York Review of Books. 55 . 14 .
  41. Book: Richard Feist. Religion and the Challenges of Science. November 30, 2017. Taylor & Francis. 978-1-351-15038-5. 174–.
  42. News: Ronan McGreevy . Nobel winner defends Israel's actions . . February 12, 2009 .
  43. The essay was first published in the "Zionism at 100" issue of The New Republic (September 8–15, 1997, pp. 22–23). It was later reprinted in his book of collected essays, Facing Up.
  44. News: Nobel laureate cancels London trip due to anti-Semitism . May 24, 2007 . . June 1, 2007 .
  45. Web site: The Nobel Prize in Physics 1979 . NobelPrize.org . July 25, 2021 . July 25, 2021.
  46. Web site: APS Fellow Archive. American Physical Society.
  47. Book: Walter, Claire . Winners, the blue ribbon encyclopedia of awards . 1982 . 438 . Facts on File Inc. . 978-0-87196-386-4 .
  48. . Weinberg awarded Oppenheimer Prize . Physics Today . American Institute of Physics . March 1973 . 87. 10.1063/1.3127994 . 1973PhT....26c..87. . 26. 3 .
  49. Wilczek. Frank. August 6, 2021. Steven Weinberg (1933–2021). Nature. en. 596. 7871. 183. 10.1038/d41586-021-02170-w. 2021Natur.596..183W. 236946383. free.
  50. Web site: https://web.archive.org/web/20151112185159/https://royalsociety.org/people/steven-weinberg-12503/. November 12, 2015. Professor Steven Weinberg ForMemRS. Royal Society. London.
  51. Web site: Weinberg, Steven, 1933– . Niels Bohr Library & Archives . July 25, 2021.
  52. Web site: UT Austin Mourns Death of World-Renowned Physicist Steven Weinberg . UT News . July 24, 2021 . July 25, 2021.
  53. Web site: Annual Humanist Awardees . American Humanist Association . September 17, 2020 . July 25, 2021.
  54. Web site: Benjamin Franklin Medal for Distinguished Achievement in the Sciences Recipients . . November 26, 2011.
  55. Web site: Weinberg receives James Joyce Award . UT News . February 24, 2009 . July 25, 2021.
  56. Web site: UT professor wins $3 million Breakthrough Prize in Fundamental Physics. September 10, 2020 . KVUE.
  57. Web site: Breakthrough Prize – Fundamental Physics Breakthrough Prize Laureates – Steven Weinberg . Breakthrough Prize . July 25, 2021.
  58. Web site: arXiv.org Search. arxiv.org.
  59. Sethi, Savdeep. Review: The quantum theory of fields. III Supersymmetry, by Steven Weinberg. Bull. Amer. Math. Soc. (N.S.). 2002. 39. 3. 433–439. 10.1090/s0273-0979-02-00944-8. free.