Steenrod algebra explained

In algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod

p

cohomology.

p

, the Steenrod algebra

Ap

is the graded Hopf algebra over the field

Fp

of order

p

, consisting of all stable cohomology operations for mod

p

cohomology. It is generated by the Steenrod squares introduced by for

p=2

, and by the Steenrod reduced

p

th powers
introduced in and the Bockstein homomorphism for

p>2

.

The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.

Cohomology operations

R

, the cup product squaring operation yields a family of cohomology operations:

Hn(X;R)\toH2n(X;R)

x\mapstox\smilex.

Cohomology operations need not be homomorphisms of graded rings; see the Cartan formula below.

These operations do not commute with suspension—that is, they are unstable. (This is because if

Y

is a suspension of a space

X

, the cup product on the cohomology of

Y

is trivial.) Steenrod constructed stable operations

Sqi\colonHn(X;\Z/2)\toHn+i(X;\Z/2)

for all

i

greater than zero. The notation

Sq

and their name, the Steenrod squares, comes from the fact that

Sqn

restricted to classes of degree

n

is the cup square. There are analogous operations for odd primary coefficients, usually denoted

Pi

and called the reduced

p

-th power operations:

Pi\colonHn(X;\Z/p)\toHn+2i(p-1)(X;\Z/p)

The

Sqi

generate a connected graded algebra over

\Z/2

, where the multiplication is given by composition of operations. This is the mod 2 Steenrod algebra. In the case

p>2

, the mod

p

Steenrod algebra is generated by the

Pi

and the Bockstein operation

\beta

associated to the short exact sequence

0\to\Z/p\to\Z/p2\to\Z/p\to0

.

In the case

p=2

, the Bockstein element is

Sq1

and the reduced

p

-th power

Pi

is

Sq2

.

As a cohomology ring

We can summarize the properties of the Steenrod operations as generators in the cohomology ring of Eilenberg–Maclane spectra

l{A}p=

*(HF
HF
p)
,since there is an isomorphism
*(HF
\begin{align} HF
p)

&=

infty \underset{\leftarrow
oplus
k=0

n}{lim

}\left(H^(K(\mathbb_p,n); \mathbb_p)\right)\endgiving a direct sum decomposition of all possible cohomology operations with coefficients in

Fp

. Note the inverse limit of cohomology groups appears because it is a computation in the stable range of cohomology groups of Eilenberg–Maclane spaces. This result[1] was originally computed by and .

Note there is a dual characterization using homology for the dual Steenrod algebra.

Remark about generalizing to generalized cohomology theories

It should be observed if the Eilenberg–Maclane spectrum

HFp

is replaced by an arbitrary spectrum

E

, then there are many challenges for studying the cohomology ring

E*(E)

. In this case, the generalized dual Steenrod algebra

E*(E)

should be considered instead because it has much better properties and can be tractably studied in many cases (such as

KO,KU,MO,MU,MSp,S,HFp

). In fact, these ring spectra are commutative and the

\pi*(E)

bimodules

E*(E)

are flat. In this case, these is a canonical coaction of

E*(E)

on

E*(X)

for any space

X

, such that this action behaves well with respect to the stable homotopy category, i.e., there is an isomorphism E_*(E)\otimes_E_*(X) \to [\mathbb{S}, E\wedge E \wedge X]_* hence we can use the unit the ring spectrum

E

\eta:\mathbb \to E to get a coaction of

E*(E)

on

E*(X)

.

Axiomatic characterization

showed that the Steenrod squares

Sqn\colonHm\toHm+n

are characterized by the following 5 axioms:
  1. Naturality:

Sqn\colonHm(X;\Z/2)\toHm+n(X;\Z/2)

is an additive homomorphism and is natural with respect to any

f\colonX\toY

, so

f*(Sqn(x))=Sqn(f*(x))

.

Sq0

is the identity homomorphism.

Sqn(x)=x\smilex

for

x\inHn(X;\Z/2)

.
  1. If

n>\deg(x)

then

Sqn(x)=0

  1. Cartan Formula:

Sqn(x\smiley)=\sumi+j=n(Sqix)\smile(Sqjy)

In addition the Steenrod squares have the following properties:

Sq1

is the Bockstein homomorphism

\beta

of the exact sequence

0\to\Z/2\to\Z/4\to\Z/2\to0.

Sqi

commutes with the connecting morphism of the long exact sequence in cohomology. In particular, it commutes with respect to suspension

Hk(X;\Z/2)\congHk+1(\SigmaX;\Z/2)

Similarly the following axioms characterize the reduced

p

-th powers for

p>2

.
  1. Naturality:

Pn\colonHm(X,\Z/p\Z)\toHm+2n(p-1)(X,\Z/p\Z)

is an additive homomorphism and natural.

P0

is the identity homomorphism.

Pn

is the cup

p

-th power on classes of degree

2n

.
  1. If

2n>\deg(x)

then

Pn(x)=0

  1. Cartan Formula:

Pn(x\smiley)=\sumi+j=n(Pix)\smile(Pjy)

As before, the reduced p-th powers also satisfy the Adem relations and commute with the suspension and boundary operators.

Adem relations

The Adem relations for

p=2

were conjectured by and established by . They are given by

SqiSqj=

\lfloori/2\rfloor
\sum
k=0

{j-k-1\choosei-2k}Sqi+j-kSqk

for all

i,j>0

such that

i<2j

. (The binomial coefficients are to be interpreted mod 2.) The Adem relations allow one to write an arbitrary composition of Steenrod squares as a sum of Serre–Cartan basis elements.

For odd

p

the Adem relations are

PaPb=\sumi(-1)a+i{(p-1)(b-i)-1\choosea-pi}Pa+b-iPi

for a<pb and

Pa\betaPb=\sumi(-1)a+i{(p-1)(b-i)\choosea-pi}\betaPa+b-i

i+ \sum
P
i

(-1)a+i+1{(p-1)(b-i)-1\choosea-pi-1}Pa+b-i\betaPi

for

a\lepb

.

Bullett–Macdonald identities

reformulated the Adem relations as the following identities.

For

p=2

put

P(t)=\sumi\geqtiSqi

then the Adem relations are equivalent to

P(s2+st)P(t2)=P(t2+st)P(s2)

For

p>2

put

P(t)=\sumi\geqtiPi

then the Adem relations are equivalent to the statement that

(1+s\operatorname{Ad}\beta)P(tp+tp-1s+ … +tsp-1)P(sp)

is symmetric in

s

and

t

. Here

\beta

is the Bockstein operation and

(\operatorname{Ad}\beta)P=\betaP-P\beta

.

Geometric interpretation

There is a nice straightforward geometric interpretation of the Steenrod squares using manifolds representing cohomology classes. Suppose

X

is a smooth manifold and consider a cohomology class

\alpha\inH*(X)

represented geometrically as a smooth submanifold

f\colonY\hookrightarrowX

. Cohomologically, if we let

1=[Y]\inH0(Y)

represent the fundamental class of

Y

then the pushforward map

f*(1)=\alpha

gives a representation of

\alpha

. In addition, associated to this immersion is a real vector bundle call the normal bundle

\nuY/X\toY

. The Steenrod squares of

\alpha

can now be understood — they are the pushforward of the Stiefel–Whitney class of the normal bundle

Sqi(\alpha)=f*(wi(\nuY/X)),

which gives a geometric reason for why the Steenrod products eventually vanish. Note that because the Steenrod maps are group homomorphisms, if we have a class

\beta

which can be represented as a sum

\beta=\alpha1++\alphan,

where the

\alphak

are represented as manifolds, we can interpret the squares of the classes as sums of the pushforwards of the normal bundles of their underlying smooth manifolds, i.e.,

Sqi(\beta)=

n
\sum
k=1

f*(wi(\nu

Yk/X

)).

Also, this equivalence is strongly related to the Wu formula.

Computations

Complex projective spaces

CP2

, there are only the following non-trivial cohomology groups,

H0(CP2)\congH2(CP2)\congH4(CP2)\cong\Z

,as can be computed using a cellular decomposition. This implies that the only possible non-trivial Steenrod product is

Sq2

on

H2(CP2;\Z/2)

since it gives the cup product on cohomology. As the cup product structure on

H\ast(CP2;\Z/2)

is nontrivial, this square is nontrivial. There is a similar computation on the complex projective space

CP6

, where the only non-trivial squares are

Sq0

and the squaring operations

Sq2i

on the cohomology groups

H2i

representing the cup product. In

CP8

the square

Sq2\colonH4(CP8;\Z/2)\toH6(CP8;\Z/2)

can be computed using the geometric techniques outlined above and the relation between Chern classes and Stiefel–Whitney classes; note that

f\colonCP4\hookrightarrowCP8

represents the non-zero class in

H4(CP8;\Z/2)

. It can also be computed directly using the Cartan formula since

x2\inH4(CP8)

and

\begin{align} Sq2(x2)&=Sq0(x)\smileSq2(x)+Sq1(x)\smileSq1(x)+Sq2(x)\smileSq0(x)\\ &=0. \end{align}

Infinite Real Projective Space

The Steenrod operations for real projective spaces can be readily computed using the formal properties of the Steenrod squares. Recall that

H*(RPinfty;\Z/2)\cong\Z/2[x],

where

\deg(x)=1.

For the operations on

H1

we know that

\begin{align} Sq0(x)&=x\\ Sq1(x)&=x2\\ Sqk(x)&=0&&foranyk>1 \end{align}

The Cartan relation implies that the total square

Sq:=Sq0+Sq1+Sq2+

is a ring homomorphism

Sq\colonH*(X)\toH*(X).

Hence

Sq(xn)=(Sq(x))n=(x+x2)n=

n
\sum
i=0

{n\choosei}xn+i

Since there is only one degree

n+i

component of the previous sum, we have that

Sqi(xn)={n\choosei}xn+i.

Construction

Suppose that

\pi

is any degree

n

subgroup of the symmetric group on

n

points,

u

a cohomology class in

Hq(X,B)

,

A

an abelian group acted on by

\pi

, and

c

a cohomology class in

Hi(\pi,A)

. showed how to construct a reduced power

un/c

in

Hnq-i(X,(ABB)/\pi)

, as follows.
  1. Taking the external product of

u

with itself

n

times gives an equivariant cocycle on

Xn

with coefficients in

BB

.
  1. Choose

E

to be a contractible space on which

\pi

acts freely and an equivariant map from

E x X

to

Xn.

Pulling back

un

by this map gives an equivariant cocycle on

E x X

and therefore a cocycle of

E/\pi x X

with coefficients in

BB

.
  1. Taking the slant product with

c

in

Hi(E/\pi,A)

gives a cocycle of

X

with coefficients in

H0(\pi,ABB)

.

The Steenrod squares and reduced powers are special cases of this construction where

\pi

is a cyclic group of prime order

p=n

acting as a cyclic permutation of

n

elements, and the groups

A

and

B

are cyclic of order

p

, so that

H0(\pi,ABB)

is also cyclic of order

p

.

Properties of the Steenrod algebra

In addition to the axiomatic structure the Steenrod algebra satisfies, it has a number of additional useful properties.

Basis for the Steenrod algebra

(for

p=2

) and (for

p>2

) described the structure of the Steenrod algebra of stable mod

p

cohomology operations, showing that it is generated by the Bockstein homomorphism together with the Steenrod reduced powers, and the Adem relations generate the ideal of relations between these generators. In particular they found an explicit basis for the Steenrod algebra. This basis relies on a certain notion of admissibility for integer sequences. We say a sequence

i1,i2,\ldots,in

is admissible if for each

j

, we have that

ij\ge2ij+1

. Then the elements

SqI=

i1
Sq

in
Sq

,

where

I

is an admissible sequence, form a basis (the Serre–Cartan basis) for the mod 2 Steenrod algebra, called the admissible basis. There is a similar basis for the case

p>2

consisting of the elements
I
Sq
p

=

i1
Sq
p

in
Sq
p
,

such that

ij\gepij+1

ij\equiv0,1\bmod2(p-1)

2k(p-1)
Sq
p

=Pk

2k(p-1)+1
Sq
p

=\betaPk

Hopf algebra structure and the Milnor basis

The Steenrod algebra has more structure than a graded

Fp

-algebra. It is also a Hopf algebra, so that in particular there is a diagonal or comultiplication map

\psi\colonA\toAA

induced by the Cartan formula for the action of the Steenrod algebra on the cup product. This map is easier to describe than the product map, and is given by

\psi(Sqk)=\sumi+j=kSqiSqj

\psi(Pk)=\sumi+j=kPiPj

\psi(\beta)=\beta ⊗ 1+1 ⊗ \beta

.

These formulas imply that the Steenrod algebra is co-commutative.

The linear dual of

\psi

makes the (graded) linear dual

A*

of A into an algebra. proved, for

p=2

, that

A*

is a polynomial algebra, with one generator

\xik

of degree

2k-1

, for every k, and for

p>2

the dual Steenrod algebra

A*

is the tensor product of the polynomial algebra in generators

\xik

of degree

2pk-2

(k\ge1)

and the exterior algebra in generators τk of degree

2pk-1

(k\ge0)

. The monomial basis for

A*

then gives another choice of basis for A, called the Milnor basis. The dual to the Steenrod algebra is often more convenient to work with, because the multiplication is (super) commutative. The comultiplication for

A*

is the dual of the product on A; it is given by

\psi(\xin)=

n
\sum
i=0
pi
\xi
n-i

\xii.

where

\xi0=1

, and

\psi(\taun)=\taun1+

n
\sum
i=0
pi
\xi
n-i

\taui

if

p>2

.

The only primitive elements of

A*

for

p=2

are the elements of the form
2i
\xi
1
, and these are dual to the
2i
Sq
(the only indecomposables of A).

Relation to formal groups

The dual Steenrod algebras are supercommutative Hopf algebras, so their spectra are algebra supergroup schemes. These group schemes are closely related to the automorphisms of 1-dimensional additive formal groups. For example, if

p=2

then the dual Steenrod algebra is the group scheme of automorphisms of the 1-dimensional additive formal group scheme

x+y

that are the identity to first order. These automorphisms are of the form

xx+

8+ …
\xi
3x

Finite sub-Hopf algebras

The

p=2

Steenrod algebra admits a filtration by finite sub-Hopf algebras. As

l{A}2

is generated by the elements
2i
Sq
,we can form subalgebras

l{A}2(n)

generated by the Steenrod squares

Sq1,Sq2,\ldots,

2n
Sq
,giving the filtration

l{A}2(1)\subsetl{A}2(2)\subset\subsetl{A}2.

These algebras are significant because they can be used to simplify many Adams spectral sequence computations, such as for

\pi*(ko)

, and

\pi*(tmf)

.

Algebraic construction

Fq

of order q. If V is a vector space over

Fq

then write SV for the symmetric algebra of V. There is an algebra homomorphism

\begin{cases}P(x)\colonSV[[x]]\toSV[[x]]\P(x)(v)=v+F(v)x=v+vqx&v\inV\end{cases}

where F is the Frobenius endomorphism of SV. If we put

P(x)(f)=\sumPi(f)xi    p>2

or

P(x)(f)=\sumSq2i(f)xi    p=2

for

f\inSV

then if V is infinite dimensional the elements

PI

generate an algebra isomorphism to the subalgebra of the Steenrod algebra generated by the reduced p′th powers for p odd, or the even Steenrod squares

Sq2i

for

p=2

.

Applications

Early applications of the Steenrod algebra were calculations by Jean-Pierre Serre of some homotopy groups of spheres, using the compatibility of transgressive differentials in the Serre spectral sequence with the Steenrod operations, and the classification by René Thom of smooth manifolds up to cobordism, through the identification of the graded ring of bordism classes with the homotopy groups of Thom complexes, in a stable range. The latter was refined to the case of oriented manifolds by C. T. C. Wall. A famous application of the Steenrod operations, involving factorizations through secondary cohomology operations associated to appropriate Adem relations, was the solution by J. Frank Adams of the Hopf invariant one problem. One application of the mod 2 Steenrod algebra that is fairly elementary is the following theorem.

Theorem. If there is a map

S2n-1\toSn

of Hopf invariant one, then n is a power of 2.

The proof uses the fact that each

Sqk

is decomposable for k which is not a power of 2; that is, such an element is a product of squares of strictly smaller degree.

Michael A. Mandell gave a proof of the following theorem by studying the Steenrod algebra (with coefficients in the algebraic closure of

Fp

):

Theorem. The singular cochain functor with coefficients in the algebraic closure of

Fp

induces a contravariant equivalence from the homotopy category of connected

p

-complete nilpotent spaces of finite

p

-type to a full subcategory of the homotopy category of

Einfty

-algebras with coefficients in the algebraic closure of

Fp

.

Connection to the Adams spectral sequence and the homotopy groups of spheres

The cohomology of the Steenrod algebra is the

E2

term for the (p-local) Adams spectral sequence, whose abutment is the p-component of the stable homotopy groups of spheres. More specifically, the

E2

term of this spectral sequence may be identified as
s,t
Ext
A

(Fp,Fp).

This is what is meant by the aphorism "the cohomology of the Steenrod algebra is an approximation to the stable homotopy groups of spheres."

See also

References

  1. Web site: at.algebraic topology – (Co)homology of the Eilenberg–MacLane spaces K(G,n) . 2021-01-15. MathOverflow.

Pedagogical

Motivic setting

l{A}//l{A}(2)

to motivic tmf

References