The Steane code is a tool in quantum error correction introduced by Andrew Steane in 1996. It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for both qubit flip errors (X errors) and phase flip errors (Z errors). The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.
Its check matrix in standard form is
\begin{bmatrix} H&0\\ 0&H \end{bmatrix}
where H is the parity-check matrix of the Hamming code and is given by
H=\begin{bmatrix} 1&0&0&1&0&1&1\\ 0&1&0&1&1&0&1\\ 0&0&1&0&1&1&1 \end{bmatrix}.
The
[[7,1,3]]
[[2r-1,2r-1-2r,3]]
r\geq3
See main article: stabilizer formalism. In a quantum error-correcting code, the codespace is the subspace of the overall Hilbert space where all logical states live. In an
n
n
Since the Steane code encodes one logical qubit in 7 physical qubits, the codespace for the Steane code is a
2
27
In the stabilizer formalism, the Steane code has 6 generators:
\begin{align} &IIIXXXX\\ &IXXIIXX\\ &XIXIXIX\\ &IIIZZZZ\\ &IZZIIZZ\\ &ZIZIZIZ. \end{align}
IIIXXXX
I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X ⊗ X
X
The logical
X
Z
\begin{align} XL&=XXXXXXX\\ ZL&=ZZZZZZZ. \end{align}
The logical
|0\rangle
|1\rangle
\begin{align} |0\rangleL=&
1 | |
\sqrt{8 |
|\psi\rangle=\alpha|0\rangleL+\beta|1\rangleL