State-transition equation explained
The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by
with state vector
x, control vector
u, vector
w of additive disturbances, and fixed matrices
A,
B, and
E, can be solved by using either the classical method of solving linear
differential equations or the
Laplace transform method. The Laplace transform solution is presented in the following equations.The Laplace transform of the above equation yields
sX(s)-x(0)=AX(s)+BU(s)+EW(s)
where x(0) denotes
initial-state vector evaluated at
. Solving for
gives
X(s)=(sI-A)-1x(0)+(sI-A)-1[BU(s)+EW(s)].
So, the state-transition equation can be obtained by taking inverse Laplace transform as
x(t)=L-1[(sI-A)-1]x(0)+L-1{(sI-A)-1[BU(s)+EW(s)]}=
\phi(t-\tau)[Bu(\tau)+Ew(\tau)]dt.
The state-transition equation as derived above is useful only when the initial time is defined to be at
. In the study of
control systems, specially discrete-data control systems, it is often desirable to break up a state-transition process into a sequence of transitions, so a more flexible initial time must be chosen. Let the initial time be represented by
and the corresponding initial state by
, and assume that the input
and the disturbance
are applied at t≥0. Starting with the above equation by setting
and solving for
, we get
x(0)=\phi(-t0)x(t0)-\phi(-t0)\int
\phi(t0-\tau)[Bu(\tau)+Ew(\tau)]d\tau.
Once the state-transition equation is determined, the output vector can be expressed as a function of the initial state.
See also
External links
- Control System Toolbox for design and analysis of control systems.
- http://web.mit.edu/2.14/www/Handouts/StateSpaceResponse.pdf
- http://planning.cs.uiuc.edu/node411.html