Stapes Explained

Stapes
Latin:stapes
Precursor:Second branchial arch
Partof:Middle ear
System:Auditory system
Articulations:Incudostapedial joint

The stapes or stirrup is a bone in the middle ear of humans and other animals which is involved in the conduction of sound vibrations to the inner ear. This bone is connected to the oval window by its annular ligament, which allows the footplate (or base) to transmit sound energy through the oval window into the inner ear. The stapes is the smallest and lightest bone in the human body, and is so-called because of its resemblance to a stirrup (Latin: Stapes).

Structure

See also: Ossicles.

The stapes is the third bone of the three ossicles in the middle ear and the smallest in the human body. It measures roughly, greater along the head-base span.[1] It rests on the oval window, to which it is connected by an annular ligament and articulates with the incus, or anvil through the incudostapedial joint. They are connected by anterior and posterior limbs (Latin: crura).[2]

Development

The stapes develops from the second pharyngeal arch during the sixth to eighth week of embryological life. The central cavity of the stapes, the obturator foramen, is due to the presence embryologically of the stapedial artery, which usually regresses in humans during normal development.[3] [4]

Animals

See also: Evolution of mammalian auditory ossicles. The stapes is one of three ossicles in mammals. In non-mammalian tetrapods, the bone homologous to the stapes is usually called the columella; however, in reptiles, either term may be used. In fish, the homologous bone is called the hyomandibular, and is part of the gill arch supporting either the spiracle or the jaw, depending on the species. The equivalent term in amphibians is the Latin: pars media plectra.[3] [5]

Variation

The stapes appears to be relatively constant in size in different ethnic groups.[6] In 0.01–0.02% of people, the stapedial artery does not regress, and persists in the central foramen.[7] In this case, a pulsatile sound may be heard in the affected ear, or there may be no symptoms at all.[8] Rarely, the stapes may be completely absent.[9]

Function

See main article: Hearing. Situated between the incus and the inner ear, the stapes transmits sound vibrations from the incus to the oval window, a membrane-covered opening to the inner ear. The stapes is also stabilized by the stapedius muscle, which is innervated by the facial nerve.

Clinical relevance

Otosclerosis is a congenital or spontaneous-onset disease characterized by abnormal bone remodeling in the inner ear. Often this causes the stapes to adhere to the oval window, which impedes its ability to conduct sound, and is a cause of conductive hearing loss. Clinical otosclerosis is found in about 1% of people, although it is more common in forms that do not cause noticeable hearing loss. Otosclerosis is more likely in young age groups, and females.[10] Two common treatments are stapedectomy, the surgical removal of the stapes and replacement with an artificial prosthesis, and stapedotomy, the creation of a small hole in the base of the stapes followed by the insertion of an artificial prosthesis into that hole.[11] Surgery may be complicated by a persistent stapedial artery, fibrosis-related damage to the base of the bone, or obliterative otosclerosis, resulting in obliteration of the base.[12]

History

The stapes is commonly described as having been discovered by the professor Giovanni Filippo Ingrassia in 1546 at the University of Naples,[13] although this remains the nature of some controversy, as Ingrassia's description was published posthumously in his 1603 anatomical commentary Latin: In Galeni librum de ossibus doctissima et expectatissima commentaria. Spanish anatomist Pedro Jimeno is first to have been credited with a published description, in Latin: Dialogus de re medica (1549).[14] The bone is so-named because of its resemblance to a stirrup (Latin: stapes), an example of a late Latin word, probably created in mediaeval times from "to stand" (Latin: stapia), as stirrups did not exist in the early Latin-speaking world.[15]

External links

Notes and References

  1. Àwengen . D. F. . Nishihara . S. . Kurokawa . H. . Goode . R. L. . Measurements of the stapes superstructure . The Annals of Otology, Rhinology, and Laryngology . April 1995 . 104 . 4 Pt 1 . 311–6 . 7717624 . 10.1177/000348949510400411. 43418740 .
  2. Book: Drake, Richard L. . . 2005 . Elsevier/Churchill Livingstone . Philadelphia . 978-0-8089-2306-0 . Vogl, Wayne . Tibbitts, Adam W. M. Mitchell . Illustrations by Richard Tibbitts and Paul Richardson.
  3. Chapman . S. C.. Can you hear me now? Understanding vertebrate middle ear development . Frontiers in Bioscience . January 1, 2011 . 16 . 5 . 1675–92 . 21196256 . 10.2741/3813 . 3065862.
  4. Rodriguez-Vazquez . J. F. . Development of the stapes and associated structures in human embryos . Journal of Anatomy . August 2005 . 207 . 2 . 165–173 . 10.1111/j.1469-7580.2005.00441.x . 16050903 . 1571512.
  5. Book: Romer . Alfred Sherwood . Parsons . Thomas S. Holt-Saunders International . 1977 . Philadelphia, Pennsylvania. The Vertebrate Body. 978-0-03-910284-5.
  6. Arensburg . B. . Harell . M. . Nathan . H. . The human middle ear ossicles: Morphometry, and taxonomic implications . Journal of Human Evolution . February 1981 . 10 . 2 . 199–205 . 10.1016/S0047-2484(81)80018-8. 1981JHumE..10..199A .
  7. Mutlu . C. . da Costa . S. S. . Paparella, MM . Schachern, Pennsylvania . Clinical-histopathological correlations of pitfalls in middle ear surgery. . European Archives of Oto-Rhino-Laryngology . 1998 . 255 . 4 . 189–194 . 9592676 . 10.1007/s004050050041. 25682582 .
  8. Silbergleit . R. . Quint . D. J. . Mehta . B. A. . Patel . S. C. . Metes . J. J. . Noujaim . S. E. . The persistent stapedial artery . American Journal of Neuroradiology. Mar 2000 . 21 . 3 . 572–577 . 10730654. 8174972 .
  9. Reiber . M. . Schwaber . M. . Congenital absence of stapes and facial nerve dehiscence . Otolaryngology–Head and Neck Surgery . February 1997 . 116 . 2 . 278 . 10.1016/S0194-5998(97)70343-7 . 9051082. 33351053 .
  10. Menger. D. J.. Tange . R. A. . The aetiology of otosclerosis: a review of the literature. Clinical Otolaryngology and Allied Sciences. April 2003. 28. 2. 112–120. 10.1046/j.1365-2273.2003.00675.x. 12680829. free.
  11. Book: Hall. John E. . Arthur C. . Guyton . Textbook of medical physiology. 2005. W. B. Saunders. Philadelphia. 978-0-7216-0240-0. 11th.
  12. Book: Tympanoplasty, Mastoidectomy, and Stapes Surgery. 2008. Georg Thieme Verlag. 978-1-282-86537-2.
  13. Dispenza. F.. Cappello . F. . Kulamarva . G. . De Stefano . A. . The discovery of stapes. Acta Otorhinolaryngologica Italica . October 2013. 33. 5. 357–359. 24227905 . 3825043.
  14. Mudry. Albert. Disputes Surrounding the Discovery of the Stapes in the Mid 16th Century. Otology & Neurotology. April 2013. 34. 3. 588–592. 10.1097/MAO.0b013e31827d8abc. 23370557. 30466939 .
  15. Web site: Harper. Douglas. Stapes (n.). Online Etymology Dictionary. 27 December 2013.