In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn (Chinese: 藺鴻圖) in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.[1]
Of the three parameters defining the distribution, the stability parameter
\alpha
0<\alpha<1
\alpha=1/2
Its standard distribution is defined as
ak{N} | ||||||||
|
1 | |
\nu |
L | ||||
|
\right),
where
\nu>0
0<\alpha<1.
Its location-scale family is defined as
ak{N}\alpha(\nu;\nu0,\theta)=
1 | ||||
|
1 | |
\nu-\nu0 |
L | ||||
|
\right),
where
\nu>\nu0
\theta>0
0<\alpha<1.
In the above expression,
L\alpha(x)
Let
X
f(x;\alpha,\beta,c,\mu)
L | ||||
|
\right)1/\alpha,0),
where
0<\alpha<1
Consider the Lévy sum
Y=
N | |
\sum | |
i=1 |
Xi
Xi\simL\alpha(x)
Y
x=1
ak{N}\alpha(\nu)
The reason why this distribution is called "stable count" can be understood by the relation
\nu=N1/\alpha
N
\alpha
N
Based on the integral form of
L\alpha(x)
q=\exp(-i\alpha\pi/2)
ak{N}\alpha(\nu)
\begin{align}ak{N}\alpha(\nu) &=
2 | ||||
|
infty | |
\int | |
0 |
-Re(q)t\alpha | |
e |
1 | \sin( | |
\nu |
t | |
\nu |
)\sin(-Im(q)t\alpha)dt,or\ &=
2 | ||||
|
infty | |
\int | |
0 |
-Re(q)t\alpha | |
e |
1 | \cos( | |
\nu |
t | |
\nu |
)\cos(Im(q)t\alpha)dt. \ \end{align}
Based on the double-sine integral above, it leads to the integral form of the standard CDF:
\begin{align}\Phi\alpha(x) &=
2 | ||||
|
x | |
\int | |
0 |
infty | |
\int | |
0 |
-Re(q)t\alpha | |
e |
1 | \sin( | |
\nu |
t | |
\nu |
)\sin(-Im(q)t\alpha)dtd\nu \ &=1-
2 | ||||
|
infty | |
\int | |
0 |
-Re(q)t\alpha | |
e |
\sin(-Im(q)t\alpha)Si(
t | |
x |
)dt, \ \end{align}
where
x | |
Si(x)=\int | |
0 |
\sin(x) | |
x |
dx
In "Series representation", it is shown that the stable count distribution is a special case of the Wright function (See Section 4 of [4]):
ak{N}\alpha(\nu)=
1 | |||||
|
W-\alpha,0(-\nu\alpha) ,whereWλ,\mu(z)=
infty | |
\sum | |
n=0 |
zn | |
n!\Gamma(λn+\mu) |
.
This leads to the Hankel integral: (based on (1.4.3) of [5])
ak{N}\alpha(\nu)=
1 | |||||
|
1 | |
2\pii |
\intHa
t-(\nut)\alpha | |
e |
dt,
Another approach to derive the stable count distribution is to use the Laplace transform of the one-sided stable distribution, (Section 2.4 of)
infty | |
\int | |
0 |
e-zL\alpha(x)dx=
-z\alpha | |
e |
,
0<\alpha<1
Let
x=1/\nu
1 | |
2 |
1 | ||||
|
-|z|\alpha | |
e |
infty | |
= \int | |
0 |
1 | |
\nu |
\left(
1 | |
2 |
e-|z|/\nu\right) \left(
1 | ||||
|
1 | |
\nu |
L\alpha\left(
1 | |
\nu |
\right)\right)d\nu
infty | |
= \int | |
0 |
1 | |
\nu |
\left(
1 | |
2 |
e-|z|/\nu\right) ak{N}\alpha(\nu)d\nu,
where
z\inR
This is called the "lambda decomposition" (See Section 4 of) since the LHS was named as "symmetric lambda distribution" in Lihn's former works. However, it has several more popular names such as "exponential power distribution", or the "generalized error/normal distribution", often referred to when
\alpha>1
Lambda decomposition is the foundation of Lihn's framework of asset returns under the stable law. The LHS is the distribution of asset returns. On the RHS, the Laplace distribution represents the lepkurtotic noise, and the stable count distribution represents the volatility.
A variant of the stable count distribution is called the stable vol distribution
V\alpha(s)
-|z|\alpha | |
e |
V\alpha(s)
1 | |
2 |
1 | ||||
|
-|z|\alpha | ||
e | = |
1 | |
2 |
1 | ||||
|
-(z2)\alpha/2 | |
e |
infty | |
= \int | |
0 |
1 | |
s |
\left(
1 | |
\sqrt{2\pi |
where
\begin{align} V\alpha(s)&=\displaystyle
\sqrt{2\pi | +1)}{\Gamma( | ||
|
1 | |
\alpha |
+1)}
ak{N} | ||||
|
(2s2),0<\alpha\leq2 \\ &=\displaystyle
\sqrt{2\pi | \Gamma( | |
}{ |
1 | |
\alpha |
+1)}
W | |||||
|
\left(-{(\sqrt{2}s)}\alpha\right) \end{align}
This transformation is named generalized Gauss transmutation since it generalizes the Gauss-Laplace transmutation, which is equivalent to
V1(s)=2\sqrt{2\pi}
ak{N} | ||||
|
(2s2)=s
-s2/2 | |
e |
The shape parameter of the Gamma and Poisson Distributions is connected to the inverse of Lévy's stability parameter
1/\alpha
Q(s,x)
-{u\alpha | |
e |
By replacing
-{u\alpha | |
e |
Reverting
( | 1 |
\alpha |
,z\alpha)
(s,x)
Q(s,x)
Differentiate
Q(s,x)
x
\begin{align}
1 | |
\Gamma(s) |
xs-1e-x&=
infty | |
\displaystyle\int | |
0 |
1 | |
\nu |
\left[sxs-1
\left(-{xs | |
e |
/{\nu}\right)}\right] ak{N}{1/{s}}\left(\nu\right)d\nu \\ &=
infty | |
\displaystyle\int | |
0 |
1 | |
t |
\left[s{\left(
x | |
t |
\right)}s-1e-{\left(s}\right] \left[ak{N}{1/{s}}\left(ts\right)sts-1\right]dt (\nu=ts) \\ &=
infty | |
\displaystyle\int | |
0 |
1 | |
t |
Weibull\left(
x | |
t |
;s\right) \left[ak{N}{1/{s}}\left(ts\right)sts-1\right]dt \end{align}
This is in the form of a product distribution. The term
\left[s{\left(
x | |
t |
\right)}s-1e-{\left(s}\right]
s
s → s+1
s
1/\alpha
The degrees of freedom
k
2/\alpha
λ=2/\alpha
For the chi-squared distribution, it is straightforward since the chi-squared distribution is a special case of the gamma distribution, in that
2 | |
\chi | |
k |
\simGamma\left(
k | |
2 |
,\theta=2\right)
1/\alpha
For the chi distribution, we begin with its CDF
P\left(
k | |
2, |
x2 | |
2 |
\right)
P(s,x)=1-Q(s,x)
P\left(
k | |
2, |
x2 | |
2 |
\right)
x
\begin{align} \chik(x)=
| ||||||||||||
|
&=
infty | |
\displaystyle\int | |
0 |
1 | |
\nu |
\left[
| ||||
2 |
kxk-1
| ||||||||||
e |
/{\nu}\right)}\right]
ak{N} | ||||
|
\left(\nu\right)d\nu \\ &=
infty | |
\displaystyle\int | |
0 |
1 | |
t |
\left[k{\left(
x | |
t |
\right)}k-1e-{\left(k}\right] \left[
ak{N} | ||||
|
\left(
| ||||
2 |
tk\right)
| ||||
2 |
ktk-1\right]dt, (\nu=
| ||||
2 |
tk) \\ &=
infty | |
\displaystyle\int | |
0 |
1 | |
t |
Weibull\left(
x | |
t |
;k\right) \left[
ak{N} | ||||
|
\left(
| ||||
2 |
tk\right)
| ||||
2 |
ktk-1\right]dt \end{align}
This formula connects
2/k
\alpha
ak{N} | ||||
|
\left( ⋅ \right)
The generalized gamma distribution is a probability distribution with two shape parameters, and is the super set of the gamma distribution, the Weibull distribution, the exponential distribution, and the half-normal distribution. Its CDF is in the form of
P(s,xc)=1-Q(s,xc)
s
a
\alpha
P(s,xc)
x
\begin{align} GenGamma(x;s,c)&=
infty | |
\displaystyle\int | |
0 |
1 | |
t |
Weibull\left(
x | |
t |
;sc\right) \left[
ak{N} | ||||
|
\left(tsc\right)sctsc-1\right]dt (s\geq1) \end{align}
where
GenGamma(x;s,c)
P(s,xc)
1/s
\alpha
ak{N} | ||||
|
\left( ⋅ \right)
sc
This formula is singular for the case of a Weibull distribution since
s
GenGamma(x;1,c)=Weibull(x;c)
ak{N} | ||||
|
\left(\nu\right)
s
s → 1
ak{N} | ||||
|
\left(\nu\right)
For a Weibull distribution whose CDF is
F(x;k,λ)=1-
-(x/λ)k | |
e |
(x>0)
k
\alpha
F(x;1,\sigma)
F(x;2,\sqrt{2}\sigma)
1-F(x;k,1)= \begin{cases}
infty | |
\displaystyle\int | |
0 |
1 | |
\nu |
(1-F(x;1,\nu))\left[\Gamma\left(
1 | |
k |
+1\right)ak{N}k(\nu)\right]d\nu, &1\geqk>0;or\\
infty | |
\displaystyle\int | |
0 |
1 | |
s |
(1-F(x;2,\sqrt{2}s))\left[\sqrt{
2 | |
\pi |
By taking derivative on
x
Weibull(x;k)
Weibull(x;k)= \begin{cases}
infty | |
\displaystyle\int | |
0 |
1 | |
\nu |
Laplace(
x | |
\nu |
)\left[\Gamma\left(
1 | |
k |
+1\right)
1 | |
\nu |
ak{N}k(\nu)\right]d\nu, &1\geqk>0;or\\
infty | |
\displaystyle\int | |
0 |
1 | |
s |
Rayleigh(
x | |
s |
)\left[\sqrt{
2 | |
\pi |
where
Laplace(x)=e-x
Rayleigh(x)=x
-x2/2 | |
e |
k=\alpha
ak{N}k(\nu)
Vk(s)
For stable distribution family, it is essential to understand its asymptotic behaviors. From, for small
\nu
\begin{align}ak{N}\alpha(\nu) & → B(\alpha)\nu\alpha,for\nu → 0andB(\alpha)>0. \ \end{align}
This confirms
ak{N}\alpha(0)=0
For large
\nu
\begin{align}ak{N}\alpha(\nu) & →
| ||||
\nu |
| ||||||||||
e |
,for\nu → inftyandA(\alpha)>0. \ \end{align}
This shows that the tail of
ak{N}\alpha(\nu)
\alpha
This tail is in the form of a generalized gamma distribution, where in its
f(x;a,d,p)
p=
\alpha | |
1-\alpha |
a=A(\alpha)-1/p
d=1+
p | |
2 |
GenGamma( | x |
a |
;s=
1 | - | |
\alpha |
1 | |
2 |
,c=p)
P\left(s,\left(
x | |
a |
\right)c\right)
The n-th moment
mn
ak{N}\alpha(\nu)
-(n+1)
L\alpha(x)
\begin{align}mn&=
infty | |
\int | |
0 |
\nunak{N}\alpha(\nu)d\nu =
1 | ||||
|
infty | |
\int | |
0 |
1 | |
tn+1 |
L\alpha(t)dt. \ \end{align}
The analytic solution of moments is obtained through the Wright function:
\begin{align}mn&=
1 | ||||
|
infty | |
\int | |
0 |
\nunW-\alpha,0(-\nu\alpha)d\nu\ &=
| |||||
|
,n\geq-1. \ \end{align}
where
infty | |
\int | |
0 |
r\deltaW-\nu,\mu(-r)dr=
\Gamma(\delta+1) | |
\Gamma(\nu\delta+\nu+\mu) |
,\delta>-1,0<\nu<1,\mu>0.
Thus, the mean of
ak{N}\alpha(\nu)
m | ||||||||||||
|
The variance is
\sigma2=
| |||||
|
-\left[
| |||||
|
\right]2
And the lowest moment is
m-1=
1 | ||||
|
\Gamma( | x |
y |
)\toy\Gamma(x)
x\to0
The n-th moment of the stable vol distribution
V\alpha(s)
\begin{align}mn(V\alpha)&=
| ||||
2 |
\sqrt{\pi}
| |||||||
|
,n\geq-1. \end{align}
The MGF can be expressed by a Fox-Wright function or Fox H-function:
\begin{align}M\alpha(s)&=
infty | |
\sum | |
n=0 |
| |||||||
n! |
=
1 | ||||
|
infty | |
\sum | |
n=0 |
| |||||
\Gamma(n+1)2 |
\ &=
1 | ||||
|
{}1\Psi
, | |||||
|
1 | |
\alpha |
);(1,1);s\right] ,or \ &=
1 | ||||
|
1,1 | |
H | |
1,2 |
\left[-sl| \begin{matrix}(1-
1 | |
\alpha |
,
1 | |
\alpha |
)\ (0,1);(0,1)\end{matrix} \right] \ \end{align}
As a verification, at
\alpha= | 1 |
2 |
M | ||||
|
(s)=
| ||||
(1-4s) |
{}1\Psi1\left[(2,2);(1,1);s\right]
infty | |
=\sum | |
n=0 |
\Gamma(2n+2)sn | |
\Gamma(n+1)2 |
\Gamma( | 1 |
2 |
-n)=\sqrt{\pi}
(-4)nn! | |
(2n)! |
When
\alpha= | 1 |
2 |
L1/2(x)
ak{N}1/2(\nu;\nu0,\theta)
4\theta
ak{N} | ||||
|
(\nu;\nu0,\theta)=
1 | |
4\sqrt{\pi |
\theta3/2
where
\nu>\nu0
\theta>0
Its mean is
\nu0+6\theta
\sqrt{24}\theta
λ=2/\alpha=4
The p-th central moments are
2\Gamma(p+3/2) | |
\Gamma(3/2) |
4p\thetap
\gamma(s,x)
M | ||||
|
(s)=
s\nu0 | |
e |
| ||||
(1-4s\theta) |
As
\alpha
ak{N}\alpha(\nu)
\alpha → 1
ak{N}\alpha\to(\nu)\to\delta(\nu-1),
where
\delta(x)=\begin{cases}infty,&ifx=0\ 0,&ifx ≠ 0\end{cases}
0+ | |
\int | |
0- |
\delta(x)dx=1
Likewise, the stable vol distribution at
\alpha\to2
V\alpha\to(s)\to\delta(s-
1 | |
\sqrt{2 |
Based on the series representation of the one-sided stable distribution, we have:
\begin{align}ak{N}\alpha(x)&=
1 | ||||
|
| ||||
\sum | ||||
n=1 |
{x}\alpha\Gamma(\alphan+1) \ &=
1 | ||||
|
| ||||
\sum | ||||
n=1 |
{x}\alpha\Gamma(\alphan+1) \ \end{align}
This series representation has two interpretations:
ak{N}\alpha(x)=
\alpha2x\alpha | |||||
|
\alpha), | |
H | |
\alpha(x |
H\alpha(k)
E\alpha(-x)
Wλ,\mu(z)
\begin{align}ak{N}\alpha(x)&=
1 | ||||
|
| ||||
\sum | ||||
n=1 |
The proof is obtained by the reflection formula of the Gamma function:
\sin((\alphan+1)\pi)\Gamma(\alphan+1)=\pi/\Gamma(-\alphan)
λ=-\alpha,\mu=0,z=-x\alpha
Wλ,\mu(z)
Stable count distribution can represent the daily distribution of VIX quite well. It is hypothesized that VIX is distributed like
ak{N} | ||||
|
(\nu;\nu0,\theta)
\nu0=10.4
\theta=1.6
\nu0
One form of mean-reverting SDE for
ak{N} | ||||
|
(\nu;\nu0,\theta)
St
dSt=
\sigma2 | |
8\theta |
(6\theta+\nu0-St)dt+\sigma\sqrt{St-\nu0}dW,
where
\sigma
This SDE is analytically tractable and satisfies the Feller condition, thus
St
\nu0
\nu0
\sqrt{max(St-\nu0,\delta\nu0)}
\delta\nu0 ≈ 0.01\nu0
St
\nu0
Extremely low VIX reading indicates a very complacent market. Thus the spillover condition,
St<\nu0
As the modified CIR model above shows, it takes another input parameter
\sigma
dSt=\sigma2\mu\alpha\left(
St | |
\theta |
\right)dt+\sigma\sqrt{St}dW,
which should produce
\{St\}
ak{N}\alpha(\nu;\theta)
t → infty
\sigma
St
By solving the Fokker-Planck equation, the solution for
\mu\alpha(x)
ak{N}\alpha(x)
\begin{array}{lcl} \mu\alpha(x)&=&\displaystyle
1 | |
2 |
\left(x{d\overdx | |
+1 |
\right)ak{N}\alpha(x)}{ak{N}\alpha(x)} \\ &=&\displaystyle
1 | |
2 |
\left[x{d\overdx}\left(logak{N}\alpha(x)\right)+1\right] \end{array}
It can also be written as a ratio of two Wright functions,
\begin{array}{lcl} \mu\alpha(x)&=&\displaystyle-
1 | |
2 |
W-\alpha,-1(-x\alpha) | ||||
|
\alpha(x)} \\ &=&\displaystyle-
1 | |
2 |
W-\alpha,-1(-x\alpha) | |
W-\alpha,0(-x\alpha) |
\end{array}
When
\alpha=1/2
\mu1/2(x)=
1 | |
8 |
(6-x)
\mu\alpha(x)
Likewise, if the asymptotic distribution is
V\alpha(s)
t → infty
\mu\alpha(x)
\mu(x;V\alpha)
\begin{array}{lcl} \mu(x;V\alpha)&=&\displaystyle-
| |||||||||||
x)} |
\alpha)}{
W | |||||
|
(-{(\sqrt{2}x)}\alpha)} -
1 | |
2 |
\end{array}
When
\alpha=1
\mu(x;V1)=1-
x2 | |
2 |
By relaxing the rigid relation between the
\sigma2
\sigma
drt=a\left[
8b | |
6 |
\mu\alpha\left(
6 | |
b |
rt\right)\right]dt+\sigma\sqrt{rt}dW,
which is reduced to the original CIR modelat
\alpha=1/2
drt=a\left(b-rt\right)dt+\sigma\sqrt{rt}dW
a
b
\sigma
\alpha
By solving the Fokker-Planck equation, the solution for the PDF
p(x)
rinfty
\begin{array}{lcl} p(x)&\propto&\displaystyle\exp\left[\intx
dx | |
x |
\left(2D\mu\alpha\left(
6 | |
b |
x\right)-1 \right)\right] ,whereD=
4ab | |
3\sigma2 |
\\ &=&\displaystyleak{N}\alpha\left(
6 | |
b |
x\right)DxD-1\end{array}
x
p(x)
f(x;a',d,p)
p=
\alpha | |
1-\alpha |
a'=
b | |
6 |
(DA(\alpha))-1/p
d=D\left(1+
p | |
2 |
\right)
\alpha=1/2
p(x)\proptoxd-1e-x/a'
d=
2ab | |
\sigma2 |
A(\alpha)=
1 | |
4 |
1 | |
a' |
=
6 | \left( | |
b |
D | |
4 |
\right)=
2a | |
\sigma2 |
H\alpha(k)
E\alpha(-x)
k>0
H\alpha(k)=l{L}-1\{E\alpha(-x)\}(k)=
2 | |
\pi |
infty | |
\int | |
0 |
E2\alpha(-t2)\cos(kt)dt.
On the other hand, the following relation was given by Pollard (1948),[7]
H\alpha(k)=
1 | |
\alpha |
1 | |
k1+1/\alpha |
L\alpha\left(
1 | |
k1/\alpha |
\right).
Thus by
k=\nu\alpha
ak{N}\alpha(\nu)=
\alpha2\nu\alpha | |||||
|
\alpha). | |
H | |
\alpha(\nu |
This relation can be verified quickly at
\alpha= | 1 |
2 |
H | (k)= | ||||
|
1 | |
\sqrt{\pi |
k2=\nu
ak{N} | ||||
|
(\nu)=
\nu1/2 | x | |
4\Gamma(2) |
1 | |
\sqrt{\pi |
The ordinary Fokker-Planck equation (FPE) is
\partialP1(x,t) | |
\partialt |
=K1\tilde{L}FPP1(x,t)
\tilde{L}FP=
\partial | |
\partialx |
F(x) | |
T |
+
\partial2 | |
\partialx2 |
K1
T
F(x)
0D
1-\alpha | |
t |
\partialP\alpha(x,t) | |
\partialt |
=K\alpha0D
1-\alpha | |
t |
\tilde{L}FPP\alpha(x,t)
K\alpha
Let
k=s/t\alpha
H\alpha(k)
n(s,t)=
1 | |
\alpha |
t | |
s1+1/\alpha |
L\alpha\left(
t | |
s1/\alpha |
\right)
from which the fractional density
P\alpha(x,t)
P1(x,t)
P\alpha(x,t)=
infty | |
\int | |
0 |
n\left(
s | |
K |
,t\right)P1(x,s)ds,whereK=
K\alpha | |
K1 |
.
Since
n( | s |
K |
,t)ds=\Gamma\left(
1 | +1\right) | |
\alpha |
1 | |
\nu |
ak{N}\alpha(\nu;\theta=K1/\alpha)d\nu
\nut=s1/\alpha
ak{N}\alpha(\nu)
t ⇒ (\nut)\alpha
P\alpha(x,t)=\Gamma\left(
1 | |
\alpha |
infty | |
+1\right) \int | |
0 |
1 | |
\nu |
ak{N}\alpha(\nu;\theta=K1/\alpha)P1(x,(\nut)\alpha)d\nu.
Here
ak{N}\alpha(\nu;\theta=K1/\alpha)
K1/\alpha