Spin-weighted spherical harmonics should not be confused with spinor spherical harmonics.
In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree, just like ordinary spherical harmonics, but have an additional spin weight that reflects the additional symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics, and are typically denoted by, where and are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight are simply the standard spherical harmonics:
{}0Yl=Yl .
Spaces of spin-weighted spherical harmonics were first identified in connection with the representation theory of the Lorentz group . They were subsequently and independently rediscovered by and applied to describe gravitational radiation, and again by as so-called "monopole harmonics" in the study of Dirac monopoles.
Regard the sphere as embedded into the three-dimensional Euclidean space . At a point on the sphere, a positively oriented orthonormal basis of tangent vectors at is a pair of vectors such that
\begin{align} x ⋅ a=x ⋅ b&=0\\ a ⋅ a=b ⋅ b&=1\\ a ⋅ b&=0\\ x ⋅ (a x b)&>0, \end{align}
A spin-weight function is a function accepting as input a point of and a positively oriented orthonormal basis of tangent vectors at, such that
fl(x,(\cos\theta)a-(\sin\theta)b,(\sin\theta)a+(\cos\theta)br)=eis\thetaf(x,a,b)
Following, denote the collection of all spin-weight functions by . Concretely, these are understood as functions on satisfying the following homogeneity law under complex scaling
f\left(λz,\overline{λ}\bar{z}\right)=\left(
\overline{λ | |
Abstractly, is isomorphic to the smooth vector bundle underlying the antiholomorphic vector bundle of the Serre twist on the complex projective line . A section of the latter bundle is a function on satisfying
g\left(λz,\overline{λ}\bar{z}\right)=\overline{λ}2sg\left(z,\bar{z}\right).
P\left(z,\bar{z}\right)=z ⋅ \bar{z}.
The spin weight bundles are equipped with a differential operator (eth). This operator is essentially the Dolbeault operator, after suitable identifications have been made,
\partial:\overline{O(2s)}\tol{E}1,0 ⊗ \overline{O(2s)}\cong\overline{O(2s)} ⊗ O(-2).
\ethf \stackrel{def
Just as conventional spherical harmonics are the eigenfunctions of the Laplace-Beltrami operator on the sphere, the spin-weight harmonics are the eigensections for the Laplace-Beltrami operator acting on the bundles of spin-weight functions.
The spin-weighted harmonics can be represented as functions on a sphere once a point on the sphere has been selected to serve as the North pole. By definition, a function with spin weight transforms under rotation about the pole via
η → eiη.
Working in standard spherical coordinates, we can define a particular operator acting on a function as:
\ethη=-\left(\sin{\theta}\right)s\left\{
\partial | |
\partial\theta |
+
i | |
\sin{\theta |
An important property of the new function is that if had spin weight, has spin weight . Thus, the operator raises the spin weight of a function by 1. Similarly, we can define an operator which will lower the spin weight of a function by 1:
\bar\ethη=-\left(\sin{\theta}\right)-s\left\{
\partial | |
\partial\theta |
-
i | |
\sin{\theta |
The spin-weighted spherical harmonics are then defined in terms of the usual spherical harmonics as:
{}sYl=\begin{cases} \sqrt{
(l-s)! | |
(l+s)! |
Other important properties include the following:
\begin{align} \eth\left({}sYl\right)&=+\sqrt{(l-s)(l+s+1)}{}s+1Yl;\\ \bar\eth\left({}sYl\right)&=-\sqrt{(l+s)(l-s+1)}{}s-1Yl; \end{align}
The harmonics are orthogonal over the entire sphere:
\int | |
S2 |
{}sYl{}s\bar{Y}l'm'dS=\deltall'\deltamm',
\suml{}s\barYl\left(\theta',\phi'\right){}sYl(\theta,\phi)=\delta\left(\phi'-\phi\right)\delta\left(\cos\theta'-\cos\theta\right)
These harmonics can be explicitly calculated by several methods. The obvious recursion relation results from repeatedly applying the raising or lowering operators. Formulae for direct calculation were derived by . Note that their formulae use an old choice for the Condon–Shortley phase. The convention chosen below is in agreement with Mathematica, for instance.
The more useful of the Goldberg, et al., formulae is the following:
{}sYl(\theta,\phi)=\left(-1\right)l+m-s\sqrt{
(l+m)!(l-m)!(2l+1) | |
4\pi(l+s)!(l-s)! |
}\sin2l\left(
\theta | |
2 |
\right)ei
l-s | |
x \sum | |
r=0 |
\left(-1\right)r{l-s\chooser}{l+s\chooser+s-m}\cot2r+s-m\left(
\theta | |
2 |
\right).
A Mathematica notebook using this formula to calculate arbitrary spin-weighted spherical harmonics can be found here.
With the phase convention here:
\begin{align} {}s\barYl&=\left(-1\right)s+m{}-sYl(-m)\\ {}sYl(\pi-\theta,\phi+\pi)&=\left(-1\right)l{}-sYl(\theta,\phi). \end{align}
Analytic expressions for the first few orthonormalized spin-weighted spherical harmonics:
\begin{align} {}1Y10(\theta,\phi)&=\sqrt{
3 | |
8\pi |
l | |
D | |
-ms |
(\phi,\theta,-\psi)=\left(-1\right)m\sqrt
4\pi | |
2l+1 |
{}sYl(\theta,\phi)eis\psi
This relation allows the spin harmonics to be calculated using recursion relations for the -matrices.
The triple integral in the case that is given in terms of the 3- symbol:
\int | |
S2 |
{} | |
s1 |
Y | |
j1m1 |
{} | |
s2 |
Y | |
j2m2 |
{} | |
s3 |
Y | |
j3m3 |
=\sqrt{
\left(2j1+1\right)\left(2j2+1\right)\left(2j3+1\right) | |
4\pi |