sphingomyelin synthase | |
Ec Number: | 2.7.8.27 |
Go Code: | 0033188 |
SMSr-ceramide |
In enzymology, a sphingomyelin synthase is an enzyme that catalyzes the chemical reaction
a ceramide + a phosphatidylcholine
\rightleftharpoons
or the reaction using phosphatidylethanolamine instead of phosphatidylcholine to generate ceramide phosphoethanolamine (CPE), a sphingomyelin analog rich in invertebrates, such as insects.
Thus, the two substrates of this enzyme are ceramide and phosphatidylcholine, whereas its two products are sphingomyelin and 1,2-diacyl-sn-glycerol.
This enzyme belongs to the family of transferases, specifically those transferring non-standard substituted phosphate groups. The systematic name of this enzyme class is ceramide:phosphatidylcholine cholinephosphotransferase. Other names in common use include SM synthase, SMS1, and SMS2. SM synthase family also includes the enzyme catalyzing CPE synthesis, named SMSr (SMS-related).
The high sequence identities shared among the three members of the Sphingomyelin Synthase (SMS) family have intrigued researchers for years. Recent cryo-electron microscopic studies have unveiled a fascinating hexameric organization specifically for SMSr,[1] while biochemical investigations have highlighted the formation of stable dimers by SMS1 and SMS2.[2] Within this hexameric structure, each monomeric unit of SMSr functions as an independent catalytic entity, characterized by six transmembrane helices.
The structural analysis has revealed the presence of a sizable chamber within the helical bundle of SMSr. This chamber serves as the site for catalytic activity, with researchers pinpointing a catalytic pentad, denoted as E-H/D-H-D, strategically positioned at the interface between the lipophilic and hydrophilic segments of the reaction chamber. Furthermore, the elucidation of SMSr's catalytic mechanism has uncovered an intricate two-step synthesis process for SM synthesis. Initially, phosphoethanolamine (or phosphatidylcholine in case of SMS1/2) is hydrolyzed from phosphatidylethanolamine (PE-PLC hydrolysis), followed by the subsequent transfer of the phosphoethanolamine moiety to ceramide.