Sphingomonadaceae Explained
Sphingomonadaceae are a gram-negative bacterial family of the Alphaproteobacteria. An important feature is the presence of sphingolipids (mainly 2′-hydroxymyristoyl dihydrosphingosine 1-glucuronic acid, "SGL-1") in the outer membrane of the cell wall.[1] [2] The cells are ovoid or rod-shaped. Others are also pleomorphic, i.e. the cells change the shape over time. Some species from Sphingomonadaceae family are dominant components of biofilms.[3] [4]
Energy source
While most species within Sphingomonadaceae family are heterotrophic,[5] some are phototrophic.
Function
Some species of Sphingomonadaceae are known to degrade some aromatic compounds. This makes the bacteria of interest to environmental remediation.[6]
The diverse metabolic capacity of genera within the Sphingomonadaceae family, such as Sphingobium, Novosphingobium, and Sphingopyxis enable these genera to adapt to and be abundant in the presence of bisphenol A. A microbial community with abundant Sphingomonadaceae members can degrade bisphenol A with a constant rate.[7]
Some Sphingomonas species are able to produce sphingans, a kind of exopolysaccharides with certain viscosity. This property of sphingans makes it useful in many industries including food and pharmaceutical.[8] [5]
Distribution
Bacteria within Sphingomonadaceae family are distributed in various environments, such as water,[9] soil,[10] [11] sediment.[5] [12]
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature and the phylogeny is based on whole-genome sequences.[13]
Interaction with human and plants
Some members of the Sphingomonadaceae commonly exist in human-impacted environments, including drinking water systems,[14] [9] hospital and household tap water,[15] and medical devices.[16] [17] [18]
Most of the species of the Sphingomonadaceae are not known to be harmful to humans or plants.[5] Some species can protect plants from disease-causing pathogens such as Thielaviopsis basicola, and Rhizoctonia solani.[5] [11] [10] [19]
The Sphingomonas and Sphingobium genera tend to have higher antibiotic resistance compared with three other genera within the Sphingomonadaceae: Novosphingobium, Sphingopyxis, and Blastomonas.[9]
See also
Notes and References
- Book: Bergey's Manual of Systematic Bacteriology. 2005. Springer. 978-0-387-24145-6. Garrity GM, Brenner DJ, Krieg NR, Staley JR. Two The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York.
- Ikushiro H, Islam MM, Tojo H, Hayashi H . Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii . Journal of Bacteriology . 189 . 15 . 5749–61 . August 2007 . 17557831 . 1951810 . 10.1128/JB.00194-07 . free .
- de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P, Zwijnenburg A, Timmers PH, Stams AJ, Plugge CM . 6 . Sphingomonadaceae from fouled membranes . npj Biofilms and Microbiomes . 5 . 1 . 6 . 2019-01-25 . 30701078 . 6347639 . 10.1038/s41522-018-0074-1 .
- Li L, Jeon Y, Lee SH, Ryu H, Santo Domingo JW, Seo Y . Dynamics of the physiochemical and community structures of biofilms under the influence of algal organic matter and humic substances . Water Research . 158 . 136–145 . July 2019 . 31026675 . 6563348 . 10.1016/j.watres.2019.04.014 . 2019WatRe.158..136L .
- Book: Glaeser SP, Kämpfer P . The Family Sphingomonadaceae . The Prokaryotes. 2014 . The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 641–707. Rosenberg E, DeLong EF, Lory S, Stackebrandt E . Berlin, Heidelberg . Springer . 10.1007/978-3-642-30197-1_302 . 978-3-642-30197-1 .
- Book: The Prokaryotes, A Handbook of the Biology of Bacteria. Balkwill DL, Fredrickson JK, Romine MR. 978-0-387-33493-6. 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. Sphingomonas and Related Genera. 12 October 2006.
- Oh S, Choi D . Microbial Community Enhances Biodegradation of Bisphenol A Through Selection of Sphingomonadaceae . Microbial Ecology . 77 . 3 . 631–639 . April 2019 . 30251120 . 10.1007/s00248-018-1263-4 . 52811122 .
- Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H . The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG . Scientific Reports . 6 . 1 . 37899 . November 2016 . 27883073 . 10.1038/srep37899 . 5121650 . 2016NatSR...637899L .
- Vaz-Moreira I, Nunes OC, Manaia CM . Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water . Applied and Environmental Microbiology . 77 . 16 . 5697–706 . August 2011 . 21705522 . 3165245 . 10.1128/AEM.00579-11 . 2011ApEnM..77.5697V .
- Kyselková M, Almario J, Kopecký J, Ságová-Marečková M, Haurat J, Muller D, Grundmann GL, Moënne-Loccoz Y . 6 . Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields . Environmental Microbiology Reports . 6 . 4 . 346–53 . August 2014 . 24992533 . 10.1111/1758-2229.12131 .
- Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM . Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils . Frontiers in Microbiology . 8 . 2529 . 2017-12-18 . 29326674 . 5741648 . 10.3389/fmicb.2017.02529 . free .
- Jin L, Ko SR, Jin CZ, Jin FJ, Li T, Ahn CY, Oh HM, Lee HG . 2019-08-01. Description of novel members of the family Sphingomonadaceae: Aquisediminimonas profunda gen. nov., sp. nov., and Aquisediminimonas sediminicola sp. nov., isolated from freshwater sediment . International Journal of Systematic and Evolutionary Microbiology. en. 69. 8. 2179–2186. 10.1099/ijsem.0.003347 . 31204973. free.
- Hördt . Anton . López . Marina García . Meier-Kolthoff . Jan P. . Schleuning . Marcel . Weinhold . Lisa-Maria . Tindall . Brian J. . Gronow . Sabine . Kyrpides . Nikos C. . Woyke . Tanja . Göker . Markus . Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria . Frontiers in Microbiology . 7 April 2020 . 11 . 468 . 10.3389/fmicb.2020.00468. 32373076 . 7179689 . free .
- Li D, Li Z, Yu J, Cao N, Liu R, Yang M . Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water . Applied and Environmental Microbiology . 76 . 21 . 7171–80 . November 2010 . 20851995 . 2976220 . 10.1128/AEM.00832-10 . 2010ApEnM..76.7171L .
- Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM . Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water . The Science of the Total Environment . 466-467 . 127–35 . January 2014 . 23892027 . 10.1016/j.scitotenv.2013.06.109 . 2014ScTEn.466..127N .
- Soto-Giron MJ, Rodriguez-R LM, Luo C, Elk M, Ryu H, Hoelle J, Santo Domingo JW, Konstantinidis KT . 6 . Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections . Applied and Environmental Microbiology . 82 . 9 . 2872–2883 . May 2016 . 26969701 . 4836434 . 10.1128/AEM.03529-15 . 2016ApEnM..82.2872S . Besser TE .
- Poza M, Gayoso C, Gómez MJ, Rumbo-Feal S, Tomás M, Aranda J, Fernández A, Bou G . 6 . Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing . PLOS ONE . 7 . 8 . e44105 . 2012-08-29 . 22952889 . 3430676 . 10.1371/journal.pone.0044105 . 2012PLoSO...744105P . free .
- Meric M, Willke A, Kolayli F, Yavuz S, Vahaboglu H . Water-borne Sphingomonas paucimobilis epidemic in an intensive care unit . The Journal of Infection . 58 . 3 . 253–5 . March 2009 . 19232740 . 10.1016/j.jinf.2009.01.007 .
- Chapelle E, Mendes R, Bakker PA, Raaijmakers JM . Fungal invasion of the rhizosphere microbiome . The ISME Journal . 10 . 1 . 265–8 . January 2016 . 26023875 . 4681858 . 10.1038/ismej.2015.82 .