Spherical space form conjecture explained

Spherical space form conjecture
Field:Geometric topology
Conjectured By:Heinz Hopf
Conjecture Date:1926
First Proof By:Grigori Perelman
First Proof Date:2006
Implied By:Geometrization conjecture
Equivalent To:Poincaré conjecture
Thurston elliptization conjecture

In geometric topology, the spherical space form conjecture (now a theorem) states that a finite group acting on the 3-sphere is conjugate to a group of isometries of the 3-sphere.

History

The conjecture was posed by Heinz Hopf in 1926 after determining the fundamental groups of three-dimensional spherical space forms as a generalization of the Poincaré conjecture to the non-simply connected case.

Status

The conjecture is implied by Thurston's geometrization conjecture, which was proven by Grigori Perelman in 2003. The conjecture was independently proven for groups whose actions have fixed points—this special case is known as the Smith conjecture. It is also proven for various groups acting without fixed points, such as cyclic groups whose orders are a power of two (George Livesay, Robert Myers) and cyclic groups of order 3 (J. Hyam Rubinstein).

See also