Sphere packing in a sphere explained

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
OptimalityArrangementDiagram
Exact formApproximate
1

1

1.00001Trivially optimal.Point
2

\dfrac{1}{2}

0.50000.25Trivially optimal.Line segment
3

2\sqrt{3}-3

0.4641...0.29988...Trivially optimal.Triangle
4

\sqrt{6}-2

0.4494...0.36326...Proven optimal.Tetrahedron
5

\sqrt{2}-1

0.4142...0.35533...Proven optimal.Trigonal bipyramid
6

\sqrt{2}-1

0.4142...0.42640...Proven optimal.Octahedron
7
1
\sqrt{32\cos\left(
\pi
18
\right)
+

{\sqrt{2+2\sqrt{3}\cos\left(

\pi
18

\right)}}+1}

0.3859...0.40231...Proven optimal.Capped octahedron
8
1
\sqrt{2+
1
\sqrt{2
} + 1}
0.3780...0.43217...Proven optimal.Square antiprism
9
\sqrt{3
-

1}{2}

0.3660...0.44134...Proven optimal.Tricapped trigonal prism
100.3530...0.44005...Proven optimal.
11

\dfrac{\sqrt{5}-3}{2}+\sqrt{5-2\sqrt{5}}

0.3445...0.45003...Proven optimal.Diminished icosahedron
12

\dfrac{\sqrt{5}-3}{2}+\sqrt{5-2\sqrt{5}}

0.3445...0.49095...Proven optimal.Icosahedron

Notes and References

  1. http://oeis.org/A084829 Best packing of m>1 equal spheres in a sphere setting a new density record